Skip to content

prateekshukla1108/llama

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

High-Level Plan for Llama 3.2 3B Inference Optimization

Phase 1: Model Analysis and Preparation

  1. Download and extract the model weights in a CUDA-friendly format
  2. Analyze the model architecture (attention mechanism, feed-forward networks, etc.)
  3. Profile the baseline inference to identify bottlenecks

Phase 2: CUDA Optimization Implementation

  1. Implement custom CUDA kernels for key operations
  2. Apply memory layout optimizations for tensor operations
  3. Leverage GPU-specific features (Tensor Cores, shared memory, etc.)
  4. Implement kernel fusion for reducing memory transfers

Phase 3: Advanced Optimization Techniques

  1. Quantization implementation (INT8)
  2. KV-cache optimization
  3. Pipeline parallelism for streaming inference
  4. Batch processing optimization

Codebase Structure and Size Estimate

The codebase would likely be around 5,000-10,000 lines of code, organized as:

llama-optimized/
├── include/                 # Header files
│   ├── model.h              # Model structure definitions
│   ├── kernels.h            # CUDA kernel declarations
│   └── utils.h              # Utility functions
├── src/
│   ├── loader/              # ~500 LOC
│   │   └── model_loader.cu  # Python bridge for model loading
│   ├── kernels/             # ~3000-5000 LOC
│   │   ├── attention.cu     # Custom attention implementation
│   │   ├── ffn.cu           # Feed-forward network operations
│   │   ├── layernorm.cu     # Layer normalization
│   │   └── gemm.cu          # Optimized matrix multiplication
│   ├── memory/              # ~500-1000 LOC
│   │   ├── kv_cache.cu      # KV cache management
│   │   └── tensor_pool.cu   # Memory management
│   ├── inference/           # ~1000-2000 LOC
│   │   ├── pipeline.cu      # Inference pipeline
│   │   └── scheduler.cu     # Work scheduling
│   └── quantization/        # ~500-1000 LOC
│       └── quant.cu         # Quantization implementations
├── tools/                   # ~500 LOC
│   ├── profiler.cu          # Performance analysis
│   └── benchmark.cu         # Benchmarking utilities
├── python/                  # ~500 LOC
│   └── bindings.py          # Python interface
├── tests/                   # ~500 LOC
│   └── correctness.cu       # Validation against reference
└── CMakeLists.txt           # Build configuration

About

Fully Optimized inference pipeline for Llama 3.2 3B

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published