- Download and extract the model weights in a CUDA-friendly format
- Analyze the model architecture (attention mechanism, feed-forward networks, etc.)
- Profile the baseline inference to identify bottlenecks
- Implement custom CUDA kernels for key operations
- Apply memory layout optimizations for tensor operations
- Leverage GPU-specific features (Tensor Cores, shared memory, etc.)
- Implement kernel fusion for reducing memory transfers
- Quantization implementation (INT8)
- KV-cache optimization
- Pipeline parallelism for streaming inference
- Batch processing optimization
The codebase would likely be around 5,000-10,000 lines of code, organized as:
llama-optimized/
├── include/ # Header files
│ ├── model.h # Model structure definitions
│ ├── kernels.h # CUDA kernel declarations
│ └── utils.h # Utility functions
├── src/
│ ├── loader/ # ~500 LOC
│ │ └── model_loader.cu # Python bridge for model loading
│ ├── kernels/ # ~3000-5000 LOC
│ │ ├── attention.cu # Custom attention implementation
│ │ ├── ffn.cu # Feed-forward network operations
│ │ ├── layernorm.cu # Layer normalization
│ │ └── gemm.cu # Optimized matrix multiplication
│ ├── memory/ # ~500-1000 LOC
│ │ ├── kv_cache.cu # KV cache management
│ │ └── tensor_pool.cu # Memory management
│ ├── inference/ # ~1000-2000 LOC
│ │ ├── pipeline.cu # Inference pipeline
│ │ └── scheduler.cu # Work scheduling
│ └── quantization/ # ~500-1000 LOC
│ └── quant.cu # Quantization implementations
├── tools/ # ~500 LOC
│ ├── profiler.cu # Performance analysis
│ └── benchmark.cu # Benchmarking utilities
├── python/ # ~500 LOC
│ └── bindings.py # Python interface
├── tests/ # ~500 LOC
│ └── correctness.cu # Validation against reference
└── CMakeLists.txt # Build configuration