INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and Non-Blind Image Restoration (JSTSP 2024)
Di You | Pier Luigi Dragotti
Imperial College London
This repository is the official PyTorch implementation of the paper INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and Non-Blind Image Restoration (JSTSP 2024)
conda env create -f environment.yaml
conda activate indigo
Download the pretrained INN models and testing data from GoogleDrive. The pretrained models for Diffusion model and SwinIR will be downloaded automatically.
python inference.py \
-i [INPUT_DIR] -o [RESULT_DIR] --task restoration \
--eta 0.5 --aligned --use_fp16 \
--config_indigo configs/sample/indigo_syn.yaml
python inference.py \
-i [INPUT_DIR] -o [RESULT_DIR] --task restoration \
--eta 0.5 --aligned --use_fp16 \
--config_indigo configs/sample/indigo_real.yaml
If you have any questions, please feel free to contact: [email protected]
If our code helps your research or work, please consider citing our paper. The following are BibTeX references:
@ARTICLE{10670023,
author={You, Di and Dragotti, Pier Luigi},
journal={IEEE Journal of Selected Topics in Signal Processing},
title={INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and Non-Blind Image Restoration},
year={2024},
volume={},
number={},
pages={1-15},
keywords={Degradation;Image restoration;Diffusion models;Noise;Training;Image reconstruction;Noise measurement;Blind image restoration;diffusion models;image restoration;invertible neural networks},
doi={10.1109/JSTSP.2024.3454957}}