Skip to content

panxulab/optimal-batched-linear-bandits

Repository files navigation

Optimal Batched Linear Bandits

[ICML 2024]

Xuanfei Ren* · Tianyuan Jin · Pan Xu

* University of Science and Technology of China · National University of Singapore · Duke University

Implementation of the paper "Optimal Batched Linear Bandits".

How to run

The "End of Optimism" instances

$\epsilon=0.01,0.2$

Instances: $\theta=(1,0)$, $\mathcal X=(1,0),(1-\epsilon,2\epsilon),(0,1)$

python main.py --d 2 --T 10000 --num_sim 10 --epsilon 0.01

python main.py --d 2 --T 10000 --num_sim 10 --epsilon 0.2

Instances: $\theta=(1,0,0)$, $\mathcal X=(1,0,0),(0,1,0),(0,0,1),(1-\epsilon,2\epsilon,0),(1-\epsilon,0,2\epsilon)$

python main.py --d 3 --T 50000 --num_sim 10 --epsilon 0.01

python main.py --d 3 --T 50000 --num_sim 10 --epsilon 0.2

Instances: $\theta=(1,0,0,0,0)$, $\mathcal X=(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),(0,0,0,1,0),(0,0,0,0,1),(1-\epsilon,2\epsilon,0,0,0),(1-\epsilon,0,2\epsilon,0,0),(1-\epsilon,0,0,2\epsilon,0),(1-\epsilon,0,0,0,2\epsilon)$

python main.py --d 5 --T 100000 --num_sim 10 --epsilon 0.01

python main.py --d 5 --T 100000 --num_sim 10 --epsilon 0.2

research on epsilon

python main.py --d 2 --T 10000 --num_sim 10 --epsilon 0.005 --research_on_epsilon 1

python main.py --d 2 --T 10000 --num_sim 10 --epsilon 0.01 --research_on_epsilon 1

python main.py --d 2 --T 10000 --num_sim 10 --epsilon 0.05 --research_on_epsilon 1

python main.py --d 2 --T 10000 --num_sim 10 --epsilon 0.1 --research_on_epsilon 1

python main.py --d 2 --T 10000 --num_sim 10 --epsilon 0.15 --research_on_epsilon 1

python main.py --d 2 --T 10000 --num_sim 10 --epsilon 0.2 --research_on_epsilon 1

random examples

python main.py --seed 1 --K 3 --d 2 --T 50000 --num_sim 10 --verbose

python main.py --seed 1 --K 5 --d 3 --T 50000 --num_sim 10 --verbose

python main.py --seed 1 --K 9 --d 5 --T 50000 --num_sim 10 --verbose

python main.py --seed 1 --K 50 --d 20 --T 50000 --num_sim 10 --verbose

Citation

@inproceedings{ren2024optimal,
  title={Optimal Batched Linear Bandits},
  author={Ren, Xuanfei and Jin, Tianyuan and Xu, Pan},
  booktitle={International Conference on Machine Learning (ICML)},
  year={2024}
}

About

Code for the paper "Optimal Batched Linear Bandits", International Conference on Machine Learning (ICML) 2024

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •