-
Industrial-Strength Data Extraction
- 📍 GPS Coordinates Extraction
- 📞 Direct Phone Number Capture
- 🌐 Website URL Retrieval
- ⭐ Average Review Score Collection
- 🏢 Full Business Address Parsing
-
Enterprise Features
- 🛡️ Anti-Detection Mechanisms with Headless Browsing
- 📈 Scalable Architecture for Bulk Operations
- 🧩 Modular Design for Easy Customization
- 📊 Dual Output Formats (Excel & CSV)
- ⏱️ Intelligent Pagination Handling
# Clone repository
git clone https://github.com/yourusername/google-maps-scraper.git
cd google-maps-scraper
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
playwright install chromium
python main.py -s="Premium Coffee Shops in Manhattan" -t=250
Add multiple search terms to input.txt
:
Luxury Apartments New York
IT Companies San Francisco
Dental Clinics London
Execute bulk extraction:
python main.py -t=500
Sample extracted data structure:
Name | Address | Website | Phone | Rating | Coordinates |
---|---|---|---|---|---|
Central Perk Cafe | 123 Broadway | www.example.com | +1 555-0123 | 4.8 | 40.7128, -74.0060 |
Files generated in /output
directory:
google_maps_data_{search_term}.xlsx
google_maps_data_{search_term}.csv
@dataclass
class Business:
# Add custom fields for:
opening_hours: str = None
total_reviews: int = None
categories: list[str] = field(default_factory=list)
# input.txt syntax:
"3 Star Hotels Paris" min_reviews:100
"Tech Startups Berlin" founded_after:2015
This tool must be used in accordance with:
- Google Maps Terms of Service
- GDPR Regulations
- CCPA Guidelines
- Your Local Data Protection Laws
Recommended: Always implement rate limiting and respect robots.txt
directives in production environments.
For custom scraping solutions: