Skip to content

Commit

Permalink
[Feature] Support PGD and multi-view FCOS3D++ on Waymo (#2835)
Browse files Browse the repository at this point in the history
Co-authored-by: JingweiZhang12 <[email protected]>
Co-authored-by: sjh <sunjiahao1999>
  • Loading branch information
sunjiahao1999 and JingweiZhang12 authored Jan 4, 2024
1 parent 2dad86c commit 88b8694
Show file tree
Hide file tree
Showing 16 changed files with 909 additions and 127 deletions.
184 changes: 184 additions & 0 deletions configs/_base_/datasets/waymoD3-fov-mono3d-3class.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
# dataset settings
# D3 in the config name means the whole dataset is divided into 3 folds
# We only use one fold for efficient experiments
dataset_type = 'WaymoDataset'
data_root = 'data/waymo/kitti_format/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=False, use_camera=True)

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/waymo/kitti_format/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection3d/',
# 'data/': 's3://openmmlab/datasets/detection3d/'
# }))
backend_args = None

train_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=False,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
# base shape (1248, 832), scale (0.95, 1.05)
dict(
type='RandomResize3D',
scale=(1248, 832),
ratio_range=(0.95, 1.05),
# ratio_range=(1., 1.),
interpolation='nearest',
keep_ratio=True,
),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Pack3DDetInputs',
keys=[
'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d',
'gt_labels_3d', 'centers_2d', 'depths'
]),
]

test_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(
type='RandomResize3D',
scale=(1248, 832),
ratio_range=(1., 1.),
interpolation='nearest',
keep_ratio=True),
dict(
type='Pack3DDetInputs',
keys=['img'],
meta_keys=[
'box_type_3d', 'img_shape', 'cam2img', 'scale_factor',
'sample_idx', 'context_name', 'timestamp', 'lidar2cam'
]),
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(
type='RandomResize3D',
scale=(1248, 832),
ratio_range=(1., 1.),
interpolation='nearest',
keep_ratio=True),
dict(
type='Pack3DDetInputs',
keys=['img'],
meta_keys=[
'box_type_3d', 'img_shape', 'cam2img', 'scale_factor',
'sample_idx', 'context_name', 'timestamp', 'lidar2cam'
]),
]

train_dataloader = dict(
batch_size=3,
num_workers=3,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='waymo_infos_train.pkl',
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_LEFT='training/image_1',
CAM_FRONT_RIGHT='training/image_2',
CAM_SIDE_LEFT='training/image_3',
CAM_SIDE_RIGHT='training/image_4'),
pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
cam_sync_instances=True,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
# load one frame every three frames
load_interval=3,
backend_args=backend_args))

val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_LEFT='training/image_1',
CAM_FRONT_RIGHT='training/image_2',
CAM_SIDE_LEFT='training/image_3',
CAM_SIDE_RIGHT='training/image_4'),
ann_file='waymo_infos_val.pkl',
pipeline=eval_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
cam_sync_instances=True,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
load_eval_anns=False,
backend_args=backend_args))

test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_LEFT='training/image_1',
CAM_FRONT_RIGHT='training/image_2',
CAM_SIDE_LEFT='training/image_3',
CAM_SIDE_RIGHT='training/image_4'),
ann_file='waymo_infos_val.pkl',
pipeline=eval_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
cam_sync_instances=True,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
backend_args=backend_args))

val_evaluator = dict(
type='WaymoMetric',
waymo_bin_file='./data/waymo/waymo_format/fov_gt.bin',
metric='LET_mAP',
load_type='fov_image_based',
result_prefix='./pgd_fov_pred')
test_evaluator = val_evaluator

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')
191 changes: 191 additions & 0 deletions configs/_base_/datasets/waymoD3-mv-mono3d-3class.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
# dataset settings
# D3 in the config name means the whole dataset is divided into 3 folds
# We only use one fold for efficient experiments
dataset_type = 'WaymoDataset'
data_root = 'data/waymo/kitti_format/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=False, use_camera=True)

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/waymo/kitti_format/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection3d/',
# 'data/': 's3://openmmlab/datasets/detection3d/'
# }))
backend_args = None

train_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=False,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
# base shape (1248, 832), scale (0.95, 1.05)
dict(
type='RandomResize3D',
scale=(1248, 832),
# ratio_range=(1., 1.),
ratio_range=(0.95, 1.05),
interpolation='nearest',
keep_ratio=True,
),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Pack3DDetInputs',
keys=[
'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d',
'gt_labels_3d', 'centers_2d', 'depths'
]),
]

test_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(
type='Resize3D',
scale_factor=0.65,
interpolation='nearest',
keep_ratio=True),
dict(
type='Pack3DDetInputs',
keys=['img'],
meta_keys=[
'box_type_3d', 'img_shape', 'cam2img', 'scale_factor',
'sample_idx', 'context_name', 'timestamp', 'lidar2cam'
]),
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(
type='Resize3D',
scale_factor=0.65,
interpolation='nearest',
keep_ratio=True),
dict(
type='Pack3DDetInputs',
keys=['img'],
meta_keys=[
'box_type_3d', 'img_shape', 'cam2img', 'scale_factor',
'sample_idx', 'context_name', 'timestamp', 'lidar2cam'
]),
]

train_dataloader = dict(
batch_size=3,
num_workers=3,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='waymo_infos_train.pkl',
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_LEFT='training/image_1',
CAM_FRONT_RIGHT='training/image_2',
CAM_SIDE_LEFT='training/image_3',
CAM_SIDE_RIGHT='training/image_4'),
pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
cam_sync_instances=True,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='mv_image_based',
# load one frame every three frames
load_interval=3,
backend_args=backend_args))

val_dataloader = dict(
batch_size=1,
num_workers=0,
persistent_workers=False,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_LEFT='training/image_1',
CAM_FRONT_RIGHT='training/image_2',
CAM_SIDE_LEFT='training/image_3',
CAM_SIDE_RIGHT='training/image_4'),
ann_file='waymo_infos_val.pkl',
pipeline=eval_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
cam_sync_instances=True,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='mv_image_based',
# load_eval_anns=False,
backend_args=backend_args))

test_dataloader = dict(
batch_size=1,
num_workers=0,
persistent_workers=False,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_LEFT='training/image_1',
CAM_FRONT_RIGHT='training/image_2',
CAM_SIDE_LEFT='training/image_3',
CAM_SIDE_RIGHT='training/image_4'),
ann_file='waymo_infos_val.pkl',
pipeline=eval_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
cam_sync_instances=True,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='mv_image_based',
load_eval_anns=False,
backend_args=backend_args))

val_evaluator = dict(
type='WaymoMetric',
waymo_bin_file='./data/waymo/waymo_format/cam_gt.bin',
metric='LET_mAP',
load_type='mv_image_based',
result_prefix='./pgd_mv_pred',
nms_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_pre=500,
nms_thr=0.05,
score_thr=0.001,
min_bbox_size=0,
max_per_frame=100))
test_evaluator = val_evaluator

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')
Loading

0 comments on commit 88b8694

Please sign in to comment.