Skip to content

Add a unittest for investigation #694

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ build/
*.bat

# test generated files
*.pkl
.pytest_cache
.cache
tests/temp
Expand Down
93 changes: 93 additions & 0 deletions tests/xgboost/test_xgboost_issues_big.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# SPDX-License-Identifier: Apache-2.0

import unittest


class TestXGBoostIssuesBig(unittest.TestCase):
def test_issue_early_stop(self):
import os
import pickle
import onnxruntime
import numpy as np
from numpy.testing import assert_almost_equal
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
from skl2onnx import update_registered_converter
from skl2onnx.common.shape_calculator import (
calculate_linear_classifier_output_shapes,
)
from onnxmltools.convert.xgboost.operator_converters.XGBoost import (
convert_xgboost,
)
from xgboost import XGBClassifier

update_registered_converter(
XGBClassifier,
"XGBoostXGBClassifier",
calculate_linear_classifier_output_shapes,
convert_xgboost,
options={"nocl": [True, False], "zipmap": [True, False, "columns"]},
)

filename = "test_issue_early_stop.pkl"
if os.path.exists(filename):
with open(filename, "rb") as f:
data = pickle.load(f)
else:
X, y = make_classification(100000, n_features=20, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train)

print(f"training a model X_train.shape={X_train.shape}, X_test={X_test.shape}")

model = XGBClassifier(
n_estimators=7500, max_depth=10, early_stopping_rounds=250
)
model.fit(
X_train,
y_train,
eval_set=[(X_val, y_val)],
eval_metric="auc",
verbose=1,
)

data = dict(
X_train=X_train,
X_test=X_test,
X_val=X_val,
y_train=y_train,
y_test=y_test,
y_val=y_val,
model=model,
)
with open(filename, "wb") as f:
pickle.dump(data, f)

# Define input type (adjust shape according to your input)
X_test, model = data["X_test"], data["model"]
X_test = X_test[:10]
initial_type = [("float_input", FloatTensorType([None, X_test.shape[1]]))]
proba = model.predict_proba(X_test)
print(proba)

# Convert XGBoost model to ONNX
onnx_model = convert_sklearn(
model,
initial_types=initial_type,
target_opset={"": 18, "ai.onnx.ml": 3},
options={"zipmap": False},
)

sess = onnxruntime.InferenceSession(
onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
)
got = sess.run(None, {"float_input": X_test[:10].astype(np.float32)})
onnx_proba = got[1]
print(onnx_proba)
assert_almost_equal(proba, onnx_proba)


if __name__ == "__main__":
unittest.main(verbosity=2)
Loading