Skip to content

nussl/models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code for training models in nussl

This repository contains the code for training many of the models in nussl. It contains a few extra utilities, such as a simple way to schedule jobs with GPUs and recipes for creating datasets.

Setting up environment

conda env create -f conda.yml
conda activate nussl-models

Set the paths appropriately in env.sh. Please ensure all paths in env.sh are absolute paths. Then source env.sh.

If you update the conda.yml file to say, add new requirements, update the conda environment after activating it:

conda env update -f conda.yml --prune

Note that the --prune option will get rid of any packages that were removed in conda.yml.

Running experiments

All of the experiments in this repository use gin-config, which is a flexible way to specify hyperparameters and configuration in a hierarchical and reusable fashion. There are 5 main functions whose arguments are all configured with gin:

  1. train: This function will train a model. This needs datasets (see wham/wham8k.gin for an example), and model and training parameters (see wham/exp/dpcl.gin for an example).
  2. cache: This function takes the datasets and caches them to the desired location.
  3. evaluate: This function evaluates a separation algorithm on the test dataset.
  4. instantiate: This function instantiates an experiment by compiling a gin config file on the fly, possibly sweeping across some hyperparameters, and writing it all to an output directory.
  5. analyze: This analyzes the experiment after evaluation. Spits out a report card with the metrics.

Finally all will run train, then evaluate, then analyze.

Usage

The main.py script takes 3 arguments and 1 positional argument. It takes an environment config file (--environment_config, -env) which sets all the machine-specific variables like path to data directories and so on, a data config file (--data_config, -dat) which describes all of the datasets, and an experiment config file (--experiment_config, -exp) which describes the model settings, the optimizer, the algorithm settings, and whatever else is needed. Generally, you'll want to follow a process like this:

python main.py --dat [path/to/data.gin] --env [path/to/env.gin] --exp [path/to/exp.gin] cache

This will cache all of the datasets so that things train faster. Now, go and set the key that says cache_populated = False to cache_populated = True in your data.gin file. Then:

python main.py --dat [path/to/data.gin] --env [path/to/env.gin] --exp [path/to/exp.gin] instantiate

This will instantiate your experiments into a single config file and place that config into a folder. The location of the folder depends on the location of the path to the experiment config. If the config file, for example, was at wham/exp/dpcl.gin, then the output will be at wham/exp/out/dpcl/run0:[descriptive_string]/config.gin. If you had a sweep in your experiment config file, then you'll see multiple of these. For example, if you had lines in your experiment config like this:

sweep.parameters = {
    'add_clip_gradient_handler.clip_value': [1e-4, 1e-3, 1e-2]
}

Then, the output configs will be at:

wham/exp/out/dpcl/run0:clip_value:0.0001/config.gin 
wham/exp/out/dpcl/run1:clip_value:0.001/config.gin 
wham/exp/out/dpcl/run2:clip_value:0.01/config.gin 

Now, you're ready to run experiments. To run, say the first experiment you would do:

python main.py --exp wham/exp/out/dpcl/run0:clip_value:0.0001/config.gin train
python main.py --exp wham/exp/out/dpcl/run0:clip_value:0.0001/config.gin evaluate
python main.py --exp wham/exp/out/dpcl/run0:clip_value:0.0001/config.gin analyze

Or to do all of them in one fell swoop:

python main.py --exp wham/exp/out/dpcl/run0:clip_value:0.0001/config.gin all

At the end, you'll see some output like this:

❯ python main.py --exp wham/exp/out/dpcl/run0:clip_value:0.0001/config.gin all
/Users/prem/miniconda3/envs/nussl-models/lib/python3.7/site-packages/torch/nn/modules/rnn.py:50: UserWarning: dropout option adds dropout after all but last recurrent layer, so non-zero dropout expects num_layers greater than 1, but got dropout=0.3 and num_layers=1
  "num_layers={}".format(dropout, num_layers))
2020-04-01:02:36:57,921 [train.py:39] SeparationModel(
  (layers): ModuleDict(
    (embedding): Embedding(
      (linear): Linear(in_features=100, out_features=2580, bias=True)
    )
    (log_spectrogram): AmplitudeToDB()
    (normalization): BatchNorm(
      (batch_norm): BatchNorm1d(1, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (recurrent_stack): RecurrentStack(
      (rnn): LSTM(129, 50, batch_first=True, dropout=0.3, bidirectional=True)
    )
  )
)
Number of parameters: 332982
2020-04-01:02:36:57,922 [train.py:45] Saving to /Users/prem/Dropbox/research/nussl-models/wham/exp/out/dpcl/run0:clip_value:0.0001
2020-04-01:02:36:57,924 [engine.py:837] Engine run starting with max_epochs=1.
2020-04-01:02:36:59,235 [engine.py:939] Epoch[1] Complete. Time taken: 00:00:01
2020-04-01:02:36:59,236 [engine.py:837] Engine run starting with max_epochs=1.
2020-04-01:02:36:59,875 [engine.py:939] Epoch[1] Complete. Time taken: 00:00:00
2020-04-01:02:36:59,876 [engine.py:947] Engine run complete. Time taken 00:00:00
2020-04-01:02:36:59,907 [trainer.py:340]

EPOCH SUMMARY
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Epoch number: 0001 / 0001
- Training loss:   0.553462
- Validation loss: 0.552009
- Epoch took: 00:00:01
- Time since start: 00:00:01
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Saving to /Users/prem/Dropbox/research/nussl-models/wham/exp/out/dpcl/run0:clip_value:0.0001/checkpoints/best.model.pth.
Output @ /Users/prem/Dropbox/research/nussl-models/wham/exp/out/dpcl/run0:clip_value:0.0001

2020-04-01:02:36:59,911 [engine.py:947] Engine run complete. Time taken 00:00:01
/Users/prem/miniconda3/envs/nussl-models/lib/python3.7/site-packages/nussl/separation/base/separation_base.py:71: UserWarning: input_audio_signal has no data!
  warnings.warn('input_audio_signal has no data!')
/Users/prem/miniconda3/envs/nussl-models/lib/python3.7/site-packages/nussl/core/audio_signal.py:445: UserWarning: Initializing STFT with data that is non-complex. This might lead to weird results!
  warnings.warn('Initializing STFT with data that is non-complex. '
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:16<00:00,  3.37s/it]
┌────────────────────┬───────────────────┬────────────────────┐
│                    │ OVERALL (N = 20)  │                    │
╞════════════════════╪═══════════════════╪════════════════════╡
│        SAR         │        SDR        │        SIR         │
├────────────────────┼───────────────────┼────────────────────┤
│ 13.487467288970947 │ -5.10146589204669 │ -5.028965532779694 │
└────────────────────┴───────────────────┴────────────────────┘

About

Code for training nussl models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published