Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Korean translations #724

Open
wants to merge 29 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
29 commits
Select commit Hold shift + click to select a range
0dfd6b5
New translations 404.md (Korean)
rgommers May 3, 2023
96bd281
New translations about.md (Korean)
rgommers May 3, 2023
8169d61
New translations arraycomputing.md (Korean)
rgommers May 3, 2023
cd5fae6
New translations blackhole-image.md (Korean)
rgommers May 3, 2023
c59a548
New translations citing-numpy.md (Korean)
rgommers May 3, 2023
4bf0790
New translations code-of-conduct.md (Korean)
rgommers May 3, 2023
da5f159
New translations community.md (Korean)
rgommers May 3, 2023
6cc3313
New translations config.yaml (Korean)
rgommers May 3, 2023
6cbfffa
New translations contribute.md (Korean)
rgommers May 3, 2023
56ba06b
New translations cricket-analytics.md (Korean)
rgommers May 3, 2023
7c3d135
New translations deeplabcut-dnn.md (Korean)
rgommers May 3, 2023
9776b72
New translations gethelp.md (Korean)
rgommers May 3, 2023
515f391
New translations gw-discov.md (Korean)
rgommers May 3, 2023
dd1d189
New translations history.md (Korean)
rgommers May 3, 2023
d03a2d4
New translations install.md (Korean)
rgommers May 3, 2023
70894c4
New translations learn.md (Korean)
rgommers May 3, 2023
43cf4c0
New translations news.md (Korean)
rgommers May 3, 2023
233d4e3
New translations press-kit.md (Korean)
rgommers May 3, 2023
4bc9147
New translations privacy.md (Korean)
rgommers May 3, 2023
9d1f96a
New translations report-handling-manual.md (Korean)
rgommers May 3, 2023
dc442cd
New translations tabcontents.yaml (Korean)
rgommers May 3, 2023
ea57152
New translations teams.md (Korean)
rgommers May 3, 2023
d34e112
New translations user-survey-2020.md (Korean)
rgommers May 3, 2023
c73da67
New translations user-surveys.md (Korean)
rgommers May 3, 2023
1d69f47
Add korean translations in top level config
steppi Feb 6, 2024
8e80480
Fix some formatting issues in case studies
steppi Feb 6, 2024
c508823
Remove redundant release line
steppi Feb 6, 2024
91878a2
Add English name of the language in drop-down as well
steppi Feb 6, 2024
db3fad0
Fix broken links
steppi Feb 6, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions config.yaml.in
Original file line number Diff line number Diff line change
Expand Up @@ -51,3 +51,12 @@ languages:
include-files:
- content/ja/config.yaml
- content/ja/tabcontents.yaml

# Korean
ko:
title: NumPy
weight: 3
contentDir: content/ko
include-files:
- content/ko/config.yaml
- content/ko/tabcontents.yaml
8 changes: 8 additions & 0 deletions content/ko/404.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
---
title: 404
sidebar: false
---

앗! 잘못된 접근입니다.

만약 이곳에 어떤 페이지가 있어야 한다면 [Issue 열기](https://github.com/numpy/numpy.org/issues)에서 문제를 제기할 수 있습니다.
90 changes: 90 additions & 0 deletions content/ko/about.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
---
title: NumPy 정보
sidebar: false
---

NumPy는 Python을 통해 수치적 컴퓨팅을 할 수 있도록 도와주는 오픈소스 프로젝트입니다. Numerical와 Numarray라는 라이브러리의 초기 작업을 기반으로 2005년에 만들어졌습니다. NumPy는 항상 100% 오픈 소스 소프트웨어이며 누구나 무료로 사용할 수 있습니다 [수정된 BSD 라이선스](https://github.com/numpy/numpy/blob/main/LICENSE.txt)의 자유로운 조건에 따라 릴리스됩니다.

NumPy는 NumPy와 더 넓은 과학 Python 커뮤니티의 합의를 통해 GitHub의 공개적으로 개발되었습니다. 거버넌스 접근 방식에 대한 자세한 내용은 [거버넌스 문서](https://www.numpy.org/devdocs/dev/governance/index.html)를 참조하세요.


## 운영 위원회

NumPy 운영 위원회는 프로젝트를 관리하는 기관입니다. 그 역할은 더 넓은 NumPy 커뮤니티와 협력하고 서비스를 제공함으로써 소프트웨어 패키지와 커뮤니티로서 프로젝트의 장기적인 지속 가능성을 보장하는 것입니다. NumPy 운영 위원회는 현재 다음과 같은 회원들로 구성되어 있습니다. (성씨의 알파벳 순서)

- Sebastian Berg
- Ralf Gommers
- Charles Harris
- Stephan Hoyer
- Inessa Pawson
- Matti Picus
- Stéfan van der Walt
- Melissa Weber Mendonça
- Eric Wieser

명예 회원

- Alex Griffing (2015-2017)
- Allan Haldane (2015-2021)
- Marten van Kerkwijk (2017-2019)
- Travis Oliphant (프로젝트 설립자, 2005-2012)
- Nathaniel Smith (2012-2021)
- Julian Taylor (2013-2021)
- Jaime Fernández del Río (2014-2021)
- Pauli Virtanen (2008-2021)

NumPy 운영 위원회에 문의하려면, [email protected] 주소로 이메일을 보내세요.

## 팀

NumPy 프로젝트 리더십은 프로젝트에 대한 기여 경로를 다양화하기 위해 적극적으로 노력하고 있습니다.<br> NumPy에는 현재 다음 팀이 있습니다:

- 개발
- 문서
- 심사
- 웹사이트
- 설문조사
- 번역
- 스프린트 멘토링
- 최적화
- 자원 및 보조금

스프린트 멘토링

## NumFOCUS 소위원회

- Charles Harris
- Ralf Gommers
- Inessa Pawson
- Sebastian Berg
- 외부 회원: Thomas Caswell

## 스폰서

NumPy는 다음과 같은 곳들에서 직접적으로 자금을 받습니다.
{{< sponsors >}}


## 기관 파트너

기관 파트너는 그들의 업무의 일환으로 NumPy에 기여하는 직원을 고용하여 프로젝트를 지원하는 조직입니다. 현재 기관 파트너는 다음과 같습니다.

- UC 버클리 (Stéfan van der Walt)
- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça)
- NVIDIA (Sebastian Berg)

{{< partners >}}


## 후원

만약 NumPy가 당신의 업무, 연구 혹은 회사에서 유용하다고 판단된다면 당신의 자원에 맞는 프로젝트에 기여하는 것을 고려해보세요. 그것이 얼마든 도움이 됩니다! 모든 후원은 NumPy의 소프트웨어 개발, 문서 작성과 커뮤니티 운영의 자금으로 엄격하게 사용될 것입니다.

NumPy는 미국의 501(c)(3) 비영리 단체인 NumFOCUS의 후원 프로젝트입니다. NumFOCUS는 NumPy에 재정적, 법적, 행정적 지원을 제공하고 프로젝트의 건강과 지속 가능성을 보장할 수 있도록 도와줍니다. 더 자세한 정보를 알고싶다면 [numfocus.org](https://numfocus.org)를 방문하세요.

NumPy에 대한 후원은 [NumFOCUS](https://numfocus.org)가 관리합니다. 미국에 거주하는 후원자의 경우에는, 당신의 후원은 법이 제공하는 한도 내에서 세금 공제를 받을 수 있습니다. 기부와 마찬가지로 특정 세금 상황에 대해서는 세금 전문가와 상담해야합니다.

NumPy 운영 위원회는 후원받은 후원금을 가장 잘 활용하는 방안을 결정합니다. 기술 및 인프라의 우선 순위는 NumPy [NumPy Roadmap](https://www.numpy.org/neps/index.html#roadmap)에 문서화되어 있습니다.

{{<opencollective>}}

21 changes: 21 additions & 0 deletions content/ko/arraycomputing.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
---
title: 배열 연산
sidebar: false
---

*배열 연산은 통계와 수학 뿐만 아니라 현대의 다양한 분야에 적용되는 데이터 사이언스, 데이터 시각화나 디지털 신호 처리, 영상 처리, 의생명 정보 공학, 기계학습, AI 등 다양한 분야에서 적용되는 데이터 분석 어플리케이션의 기반입니다.*

대규모 데이터의 조작과 연산은 고효율, 고성능의 배열 연산에 달려있습니다. **Python**은 데이터 과학자, 머신 러닝 개발자, 그리고 효율적인 수치 계산을 필요로 하는 분야에서 선택되는 프로그래밍 언어입니다.

**Num**erical **Py**thon 또는 NumPy 는 파이썬의 표준라이브러리에는 포함되지 않지만, 대규모, 다차원 행렬을 표현할 수 있고, 배열 연산을 위한 고수준의 수학 함수들을 포함한 라이브러리입니다.

2006년에 NumPy가 출시된 이후로, 2008년에 이를 기반으로 Pandas가 나타났습니다. 그리고 몇년전까지도, 다양한 배열 연산 라이브러리가 잇따라 나오며 배열 연산 분야가 더욱 활발해 졌습니다. 최신의 라이브러리들중 대부분은 NumPy 같은 특징과 성능을 모방하고, 새로운 알고리즘이나 머신러닝이나 인공지능 어플리케이션을 위한 특화된 기능을 포함하고 있습니다.

<img
src="/images/content_images/array_c_landscape.png"
alt="arraycl"
title="Array Computing Landscape" />

**배열 연산**의 기반은 **array ** 자료구조 입니다. *배열*은 대규모의 데이터를 정렬, 검색, 수학 계산, 그리고 변형을 쉽고 빠르게 처리하는데 사용됩니다.

배열 연산은 *한번에 * 데이터 배열에 *모든 연산이* 계산 됩니다. 다시 말해서, 모든 배열 연산은 전체 데이터에 한번에 적용됩니다. 이 벡터화 접근법은 배열 연산을 위해 루프를 활용하여 개별적인 데이터에 접근하여 연산하는 코드를 작성하지 않고, 배열에 바로 연산하는 코드를 작성하여, 개발자가 보다 개발 빠르고 간단하게 할수 있게 해줍니다.
70 changes: 70 additions & 0 deletions content/ko/case-studies/blackhole-image.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
---
title: "사례 연구: 최초의 블랙홀 사진"
sidebar: false
---

{{< figure src="/images/content_images/cs/blackhole.jpg" caption="**블랙홀 M87**" alt="블랙홀 사진" attr="*(사진 크레딧: Event Horizon Telescope Collaboration)*" attrlink="https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg" >}}

{{< blockquote cite="https://www.youtube.com/watch?v=BIvezCVcsYs" by="Katie Bouman, *Assistant Professor, Computing & Mathematical Sciences, Caltech*"
>}}
Imaging the M87 Black Hole is like trying to see something that is by definition impossible to see.
{{< /blockquote >}}

## 지구 크기의 망원경

[사건의 지평선 망원경(EHT)](https://eventhorizontelescope.org)은 8개의 지상 전파 망원경으로 구성된 지구 크기의 전산 망원경으로, 전례없는 감도와 해상도로 우주를 연구하는 데 쓰입니다. 초장기선 간섭 관측법(VLBI)이라는 기술을 사용하는 거대한 가상 망원경의 각해상도는 [20 마이크로각초][resolution]에 달하며 파리의 길거리 카페에서 뉴욕의 신문을 읽기에 충분한 정도입니다!

### 주요 목표 및 결과

* **우주를 보는 새로운 방식:** EHT라는 획기적인 발상의 토대는 [아서 에딩턴 경][eddington]의 관측으로 아인슈타인의 일반 상대성이론이 최초로 관측적 지지를 받았던 시기인 100년 전에 마련되었습니다.

* **블랙홀:** EHT는 처녀자리 은하단의 Messier 87(M87) 은하의 중심부에 있는 초대질량 블랙홀로 훈련되었으며 이는 지구에서 약 5500만 광년 떨어져 있습니다. 이 천체의 질량은 태양의 65억 배입니다. [100년 넘게](https://www.jpl.nasa.gov/news/news.php?feature=7385) 연구되었으나, 블랙홀을 시각적으로 볼 수 있게 구현한 바는 없었습니다.

* **관찰과 이론의 비교:** 아인슈타인의 일반 상대성이론에 따라 과학자들은 중력의 시공간 왜곡이나 빛 흡수에 의해 어둡게 보이는 영역이 나타날 것으로 예측하였습니다. 과학자들은 이를 블랙홀의 엄청난 질량을 재는 데 이용할 수 있었죠.

### 도전

* **계산의 규모**

EHT는 급격한 대기 위상의 변동, 큰 기록 대역폭, 완전히 다르고 지리적으로 분산된 망원경 등의 문제를 포함한 막대한 데이터를 처리해야 하는 문제를 낳습니다.

* **지나치게 많은 정보**

EHT는 매일 350 테라바이트의 관측 결과를 생성하며, 이 정보는 헬륨으로 채운 하드 드라이브에 저장됩니다. 이토록 많은 데이터의 양과 복잡성을 줄여나가는 것은 지극히 어려운 일입니다.

* **잘 알지 못함**

만약 목표가 이전에 본 적이 없는 것을 보는 것이라면, 과학자들은 어떻게 이 사진이 옳다고 입증할 수 있을까요?

{{< figure src="/images/content_images/cs/dataprocessbh.png" class="csfigcaption" caption="**EHT 데이터 처리 파이프라인**" alt="데이터 파이프라인" align="middle" attr="(다이어그램 크레딧: The Astrophysical Journal, Event Horizon Telescope Collaboration)" attrlink="https://iopscience.iop.org/article/10.3847/2041-8213/ab0c57" >}}

## NumPy의 역할

데이터에 만약 문제가 있다면 어떨까요? 아니면 알고리즘이 특정 가정에 지나치게 의존할 수도 있습니다. 매개변수 하나만 달라져도 사진이 크게 바뀔까요?

EHT는 기존 및 최첨된 이미지 재구성 기술을 모두 사용한 뒤, 개개의 팀이 데이터를 평가하도록 하여 이런 문제를 해결했습니다. 결과가 일관적이라는 것을 검증한 뒤, 이들을 결합해 최초의 블랙홀 이미지를 만들어내었습니다.

그들의 연구는 협업 데이터 분석을 통해 과학을 발전시키는 과학적인 Python 생태계의 역할을 보여줍니다.

{{< figure src="/images/content_images/cs/bh_numpy_role.png" class="fig-center" alt="numpy의 역할" caption="**블랙홀 시각화에서 NumPy의 역할**" >}}

예를 들어, [`eht-imaging`][ehtim] Python 패키지는 VLBI 데이터를 통해 실험이나 이미지 재구성을 수행할 때 필요한 도구를 제공합니다. NumPy는 아래 소프트웨어 종속성 차트에 나와 있는 것처럼 이 패키지에서 사용되는 배열 데이터 처리의 핵심 역할을 합니다.

{{< figure src="/images/content_images/cs/ehtim_numpy.png" class="fig-center" alt="numpy를 강조하는 ehtim의 종속성 맵" caption="**NumPy를 강조하는 ehtim 패키지의 소프트웨어 종속성 차트**" >}}

NumPy 외에도 [SciPy](https://www.scipy.org)와 [Pandas](https://pandas.io) 등의 다른 많은 패키지가 블랙홀을 시각화하는 데이터 처리 파이프라인의 일부입니다. 표준 천문 파일 형식과 시간/좌표 변환에는 [Astropy][astropy]가 쓰였고 [Matplotlib][mpl]는 분석 과정 전체에서 블랙홀의 최종 사진을 생성하는 등 데이터를 시각화하는 데 쓰였습니다.

## 요약

NumPy의 핵심 기능인 효율적이고 유용한 n차원 배열은 연구자들이 대규모 수치 데이터셋을 다룰 수 있도록 하여 최초의 블랙홀 사진을 만드는 데 토대를 제공했습니다. 이번 관측은 아인슈타인의 이론에 훌륭한 시각적 증거를 준 관측으로, 과학계에 한 획을 그은 순간이었습니다. 기술적 혁신뿐만 아니라 200명 이상의 과학자와 세계 최고의 전파 관측소 간의 국제 협력도 이루어 냈습니다. 기존의 천문학 모델을 개선한 혁신적인 알고리즘과 데이터 처리 기술이 우주의 비밀을 알아내는 데 도움을 주었습니다.

{{< figure src="/images/content_images/cs/numpy_bh_benefits.png" class="fig-center" alt="numpy를 통한 이익" caption="**활용된 주요 NumPy 기능**" >}}

[resolution]: https://eventhorizontelescope.org/press-release-april-10-2019-astronomers-capture-first-image-black-hole

[eddington]: https://ko.wikipedia.org/wiki/%EC%95%84%EC%84%9C_%EC%8A%A4%ED%83%A0%EB%A6%AC_%EC%97%90%EB%94%A9%ED%84%B4#%EC%9D%BC%EB%B0%98%EC%83%81%EB%8C%80%EC%84%B1%EC%9D%B4%EB%A1%A0%EC%9D%98_%EC%8B%A4%ED%97%98%EC%A0%81_%EA%B2%80%EC%A6%9D

[ehtim]: https://github.com/achael/eht-imaging

[astropy]: https://www.astropy.org/
[mpl]: https://matplotlib.org/
Loading