-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8408e9f
commit 43e5a20
Showing
4 changed files
with
311 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
#!/usr/bin/env python3 | ||
|
||
from torch import optim, nn | ||
import torch | ||
import lightning as L | ||
from models import CNN | ||
|
||
class VelocityDecoder(L.LightningModule): | ||
def __init__(self, model_name, model_hparams, optimizer_name, | ||
optimizer_hparams, misc_hparams): | ||
"""Decoder for the target's velocity | ||
Args: | ||
model_name: Name of the model/CNN to run. Used for creating the model (see function below) | ||
model_hparams: Hyperparameters for the model, as dictionary. | ||
optimizer_name: Name of the optimizer to use. Currently supported: Adam, SGD | ||
optimizer_hparams: Hyperparameters for the optimizer, as dictionary. This includes learning rate, weight decay, etc. | ||
""" | ||
super().__init__() | ||
# Exports the hyperparameters to a YAML file, and create "self.hparams" namespace | ||
self.save_hyperparameters() | ||
# Create model | ||
self.model = self.create_model(model_name, model_hparams) | ||
# Create loss module | ||
self.loss_function = nn.MSELoss() | ||
|
||
torch.set_float32_matmul_precision('medium') | ||
|
||
def create_model(self, model_name, model_hparams): | ||
if model_name in model_dict: | ||
return model_dict[model_name](**model_hparams) | ||
else: | ||
assert False, f'Unknown model name "{model_name}". Available models are: {str(model_dict.keys())}' | ||
|
||
def forward(self, x): | ||
return self.model(x) | ||
|
||
def configure_optimizers(self): | ||
# We will support Adam or SGD as optimizers. | ||
if self.hparams.optimizer_name == "Adam": | ||
# AdamW is Adam with a correct implementation of weight decay (see here | ||
# for details: https://arxiv.org/pdf/1711.05101.pdf) | ||
optimizer = optim.AdamW(self.parameters(), | ||
**self.hparams.optimizer_hparams) | ||
elif self.hparams.optimizer_name == "SGD": | ||
optimizer = optim.SGD(self.parameters(), | ||
**self.hparams.optimizer_hparams) | ||
else: | ||
assert False, f'Unknown optimizer: "{self.hparams.optimizer_name}"' | ||
|
||
# We will reduce the learning rate by 0.1 after 100 and 150 epochs | ||
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, | ||
milestones=[100, 150], | ||
gamma=0.1) | ||
return [optimizer], [scheduler] | ||
|
||
def get_loss_function(self, loss_hparams): | ||
if loss_hparams["loss_name"] == "mse": | ||
self.loss_function = nn.MSELoss() | ||
else: | ||
assert False, f'Unknown loss: "{loss_hparams["loss_name"]}"' | ||
|
||
def training_step(self, batch, batch_idx): | ||
# training_step defines the train loop. | ||
# it is independent of forward | ||
x, y = batch | ||
x = x.view(-1, x.size(1)**2) | ||
preds = self.model(x) | ||
loss = self.loss_function(preds, y) | ||
acc = (preds == y).float().mean() | ||
self.log("train_acc", acc, on_step=False, on_epoch=True) | ||
self.log("train_loss", loss, prog_bar=True) | ||
return loss | ||
|
||
def validation_step(self, batch, batch_idx): | ||
# validation_step defines the validation loop. | ||
x, y = batch | ||
x = x.view(-1, x.size(1)**2) | ||
preds = self.model(x) | ||
loss = self.loss_function(preds, y) | ||
acc = (preds == y).float().mean() | ||
self.log("val_acc", acc, on_step=False, on_epoch=True) | ||
self.log("val_loss", loss, prog_bar=True) | ||
return loss | ||
|
||
def test_step(self, batch, batch_idx): | ||
x, y = batch | ||
x = x.view(-1, x.size(1)**2) | ||
preds = self.model(x) | ||
loss = self.loss_function(preds, y) | ||
acc = (preds == y).float().mean() | ||
self.log("test_acc", acc, on_step=False, on_epoch=True) | ||
self.log("test_loss", loss, prog_bar=True) | ||
return loss | ||
|
||
def predict_step(self, batch, batch_idx, dataloader_idx=0): | ||
x, y = batch | ||
x = x.view(-1, x.size(1)**2) | ||
y_hat = self.model(x) | ||
return y_hat, y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
#!/usr/bin/env python3 | ||
|
||
from torch import nn | ||
import torch | ||
|
||
class CNN(nn.Module): | ||
def __init__(self, input_size, output_size): | ||
super(CNN, self).__init__() | ||
self.conv_layers = nn.Sequential( | ||
nn.Conv1d(input_size, 16, kernel_size=7), # Lout = 250, given L = 256 | ||
nn.MaxPool1d(2), # Lout = 125, given L = 250 | ||
nn.Conv1d(16, 32, kernel_size=7), # Lout = 119, given L = 125 | ||
nn.MaxPool1d(2), # Lout = 59, given L = 119 | ||
nn.Conv1d(32, 64, kernel_size=7) # Lout = 53, given L = 59 | ||
nn.MaxPool1d(2), # Lout = 26, given L = 53 | ||
nn.Dropout(0.1), | ||
nn.Conv1d(64, 64, kernel_size=7), # Lout = 20, given L = 26 | ||
nn.MaxPool1d(2) # Lout = 10, given L = 20 | ||
) | ||
self.fc_layers = nn.Sequential( | ||
nn.Linear(640, 16), | ||
nn.Linear(16, 1) | ||
) | ||
|
||
def forward(self, x): | ||
out = self.conv_layers(x) | ||
out = self.view(640) | ||
out = self.fc_layers(out) | ||
return out | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
#!/usr/bin/env python3 | ||
|
||
import os, sys, glob | ||
import torch | ||
from torch.utils.data import Dataset, DataLoader | ||
import h5py | ||
from lightning.pytorch.callbacks.early_stopping import EarlyStopping | ||
from lightning.pytorch.callbacks import ModelCheckpoint | ||
from decoder import VelocityDecoder | ||
from torch import FloatTensor | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import lightning as L | ||
from lightning.pytorch.loggers import WandbLogger | ||
from itertools import product | ||
|
||
# Define a custom Dataset class | ||
class VelocityDataset(Dataset): | ||
def __init__(self, h5_file): | ||
self.h5_file = h5_file | ||
with h5py.File(self.h5_file, 'r') as f: | ||
self.length = len(f['time_data']) # num shots | ||
|
||
def open_hdf5(self, group_size=64, num_groups=256): | ||
# solves issue where hdf5 file opened in __init__ prevents multiple | ||
# workers: https://github.com/pytorch/pytorch/issues/11929 | ||
self.file = h5py.File(self.h5_file, 'r') | ||
self.inputs = self.file['PD (V)'][:, ::group_size] # take num_groups evenly spaced points, [num_shots, num_groups] | ||
grouped_velocities = np.array(np.hsplit(self.file['Speaker (Microns/s)'], num_groups)) # [num_groups, num_shots, group_size] | ||
grouped_velocities = np.transpose(grouped_velocities, [1, 0, 2]) # [num_shots, num_groups, group_size] | ||
self.targets = np.average(grouped_velocities, axis=3) # store average velocity per group per shot: [num_shots, num_groups] | ||
|
||
def __len__(self): | ||
return self.length | ||
|
||
def __getitem__(self, idx): | ||
if not hasattr(self, self.h5_file): | ||
self.open_hdf5() | ||
return FloatTensor(self.inputs[idx]), FloatTensor(self.targets[idx]) | ||
|
||
class TrainingRunner: | ||
def __init__(self, training_h5, validation_h5, testing_h5, | ||
velocity_only=False): | ||
self.training_h5 = training_h5 | ||
self.validation_h5 = validation_h5 | ||
self.testing_h5 = testing_h5 | ||
self.velocity_only = velocity_only | ||
|
||
# get dataloaders | ||
self.set_dataloaders() | ||
|
||
# dimensions | ||
self.input_size = next(iter(self.train_loader))[0].size(-1) ** 2 | ||
self.output_size = next(iter(self.train_loader))[1].size(-1) | ||
|
||
# directories | ||
self.checkpoint_dir = "./checkpoints" | ||
|
||
def get_custom_dataloader(self, h5_file, batch_size=128, shuffle=True, | ||
velocity_only=True): | ||
if velocity_only: | ||
dataset = VelocityDataset(h5_file) | ||
|
||
# We can use DataLoader to get batches of data | ||
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, | ||
num_workers=16, persistent_workers=True, | ||
pin_memory=True) | ||
|
||
return dataloader | ||
|
||
def set_dataloaders(self, batch_size=128): | ||
self.batch_size = batch_size | ||
self.train_loader = self.get_custom_dataloader(self.training_h5, velocity_only=self.velocity_only, batch_size=self.batch_size) | ||
self.valid_loader = self.get_custom_dataloader(self.validation_h5, velocity_only=self.velocity_only, batch_size=self.batch_size, shuffle=False) | ||
self.test_loader = self.get_custom_dataloader(self.testing_h5, velocity_only=self.velocity_only, batch_size=self.batch_size, shuffle=False) | ||
|
||
|
||
def train_model(self, model_name, save_name=None, **kwargs): | ||
"""Train model. | ||
Args: | ||
model_name: Name of the model you want to run. Is used to look up the class in "model_dict" | ||
save_name (optional): If specified, this name will be used for creating the checkpoint and logging directory. | ||
""" | ||
if save_name is None: | ||
save_name = model_name | ||
|
||
# logger | ||
logger = WandbLogger(project='SMI', | ||
group=model_name, log_model=True, | ||
save_dir=os.path.join(self.checkpoint_dir, save_name)) | ||
|
||
# callbacks | ||
# early stopping | ||
early_stop_callback = EarlyStopping(monitor="val_loss", | ||
min_delta=0.00, | ||
patience=5, | ||
verbose=True, | ||
mode="min") | ||
checkpoint_callback = ModelCheckpoint(save_weights_only=True, | ||
mode="max", monitor="val_acc") | ||
# Save the best checkpoint based on the maximum val_acc recorded. | ||
# Saves only weights and not optimizer | ||
|
||
# Create a PyTorch Lightning trainer with the generation callback | ||
trainer = L.Trainer( | ||
default_root_dir=os.path.join(self.checkpoint_dir, save_name), | ||
accelerator="gpu", | ||
devices=[0], | ||
max_epochs=180, | ||
callbacks=[early_stop_callback, checkpoint_callback], | ||
check_val_every_n_epoch=10, | ||
logger=logger | ||
) | ||
|
||
# L.seed_everything(42) # To be reproducible | ||
model = VelocityDecoder(model_name=model_name, **kwargs) | ||
trainer.fit(model, self.train_loader, self.valid_loader) | ||
|
||
# Load best checkpoint after training | ||
model = VelocityDecoder.load_from_checkpoint( | ||
trainer.checkpoint_callback.best_model_path) | ||
|
||
# Test best model on validation and test set | ||
val_result = trainer.test(model, dataloaders=self.valid_loader, | ||
verbose=False) | ||
test_result = trainer.test(model, dataloaders=self.test_loader, | ||
verbose=False) | ||
result = {"test": test_result[0]["test_acc"], | ||
"val": val_result[0]["test_acc"]} | ||
|
||
logger.experiment.finish() | ||
|
||
return model, result | ||
|
||
def scan_hyperparams(self): | ||
for lr in [1e-3, 1e-2, 3e-2]: | ||
|
||
model_config = {"input_size": self.input_size, | ||
"output_size": self.output_size} | ||
optimizer_config = {"lr": lr} | ||
#"momentum": 0.9,} | ||
misc_config = {"batch_size": self.batch_size} | ||
|
||
self.train_model(model_name="CNN", | ||
model_hparams=model_config, | ||
optimizer_name="Adam", | ||
optimizer_hparams=optimizer_config, | ||
misc_hparams=misc_config) | ||
|
||
def load_model(self): | ||
Check whether pretrained model exists. If yes, load it and skip training | ||
pretrained_filename = os.path.join(self.checkpoint_dir, "SMI", "f63rieqp", | ||
"checkpoints", "*" + ".ckpt") | ||
print(pretrained_filename) | ||
if os.path.isfile(glob.glob(pretrained_filename)[0]): | ||
pretrained_filename = glob.glob(pretrained_filename)[0] | ||
print( | ||
f"Found pretrained model at {pretrained_filename}, loading...") | ||
# Automatically loads the model with the saved hyperparameters | ||
model = VelocityDecoder.load_from_checkpoint(pretrained_filename) | ||
|
||
# Create a PyTorch Lightning trainer with the generation callback | ||
trainer = L.Trainer( | ||
accelerator="gpu", | ||
devices=[0] | ||
) | ||
|
||
# Test best model on validation and test set | ||
val_result = trainer.test(model, dataloaders=self.valid_loader, | ||
verbose=False) | ||
test_result = trainer.test(model, dataloaders=self.test_loader, | ||
verbose=False) | ||
result = {"test": test_result[0]["test_acc"], | ||
"val": val_result[0]["test_acc"]} | ||
|
||
return model, result |