Skip to content

noman1321/Pothole

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Flask application for pothole detection using YOLOV4 , OpenCV;

Architecture Used:-

ComputerVision, ObjectDetection, YOLOV4, OpenCV, html, Flask api, etc..

How to run (Local Server) :-

a) In PyCharm, go to settings choose Python interpreter & create a new environment with Python 3.6 or 3.7(as these two works better).

b) Open Anaconda prompt & there create a new environment by using the command--

conda create –n ‘env_name’ python==3.7

Activate your Environment by using the command--

  conda activate ‘env_name’

2. Install requirements.txt by using the command--

    pip install requirements.txt

3. a) In PyCharm just simply right click & run “main.py” file.

b) In Prompt use the command –

    python app.py # Real Time Pothole Detector

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.1%
  • HTML 6.0%
  • Dockerfile 4.9%
  • CSS 3.0%