-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
cmt-20230411-1: +other_models:knn+svm
- Loading branch information
Showing
179 changed files
with
3,933 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
.idea | ||
**/*.txt | ||
**/*.png | ||
**/*.jpg |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
from travel_path import * | ||
import pylab as pl | ||
|
||
mark = ['ob', 'or', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr'] | ||
|
||
files = travel_txt('cluster_freqXstd/') | ||
files = files.reshape(20,1) | ||
files1 = np.copy(files[6:16]) | ||
files2 = np.row_stack((files[16:],files[:6])) | ||
|
||
xlines = np.genfromtxt('Mild Outlier.txt') | ||
xlines = xlines.reshape(20,1) | ||
xlines1 = np.copy(xlines[6:16]) | ||
xlines2 = np.row_stack((xlines[16:],xlines[:6])) | ||
|
||
pl.figure(figsize=(10,18)) | ||
for i in range(files1.shape[0]): | ||
data = np.genfromtxt(files1[i,0]) | ||
|
||
SpacePoint = files1[i,0].split(' ')[-1] | ||
SpacePoint = SpacePoint.split('.')[0] + '.' + SpacePoint.split('.')[1] | ||
print(SpacePoint) | ||
|
||
data_tmp = data[:,0] | ||
max = np.max(data_tmp, axis=0) | ||
min = np.min(data_tmp, axis=0) | ||
|
||
pl.subplot(5,2,i+1) | ||
for j in range(data.shape[0]): | ||
if data[j,2] == 1: | ||
pl.plot(data[j, 0], data[j, 1], mark[np.int(data[j, 2])], label='Relatively Abnormal Signal') | ||
else: | ||
pl.plot(data[j, 0], data[j, 1], mark[np.int(data[j, 2])]) | ||
pl.legend() | ||
pl.xlabel("timeStd / V") | ||
pl.ylabel("freqCorr") | ||
pl.title("2-Clustering Result of freqXstd of Point at " + SpacePoint) | ||
|
||
# x = np.arange(min, max, (max-min)/data.shape[0]) | ||
# if x.shape[0] > 1728: | ||
# x = x[:1728] | ||
# | ||
# pl.axvline(xlines1[i], color='k', linewidth=0.5) | ||
# yline = 0.55*np.ones(data.shape[0]) | ||
# pl.plot(x, yline, color='k', linewidth=0.5) | ||
pl.tight_layout() | ||
pl.savefig('cluster_freqXstd/fig1.png') | ||
|
||
pl.figure(figsize=(10,18)) | ||
for i in range(files2.shape[0]): | ||
data = np.genfromtxt(files2[i,0]) | ||
|
||
SpacePoint = files2[i,0].split(' ')[-1] | ||
SpacePoint = SpacePoint.split('.')[0] + '.' + SpacePoint.split('.')[1] | ||
print(SpacePoint) | ||
|
||
data_tmp = data[:,0] | ||
max = np.max(data_tmp, axis=0) | ||
min = np.min(data_tmp, axis=0) | ||
|
||
pl.subplot(5,2,i+1) | ||
for j in range(data.shape[0]): | ||
if data[j,2] == 1: | ||
pl.plot(data[j, 0], data[j, 1], mark[np.int(data[j, 2])], label='Relatively Abnormal Signal') | ||
else: | ||
pl.plot(data[j, 0], data[j, 1], mark[np.int(data[j, 2])]) | ||
pl.legend() | ||
pl.xlabel("timeStd / V") | ||
pl.ylabel("freqCorr") | ||
pl.title("2-Clustering Result of freqXstd of Point at " + SpacePoint) | ||
|
||
# x = np.arange(min, max, (max-min)/data.shape[0]) | ||
# if x.shape[0] > 1728: | ||
# x = x[:1728] | ||
|
||
# pl.axvline(xlines2[i], color='k', linewidth=0.5) | ||
# yline = 0.55*np.ones(data.shape[0]) | ||
# pl.plot(x, yline, color='k', linewidth=0.5) | ||
pl.tight_layout() | ||
pl.savefig('cluster_freqXstd/fig2.png') |
11 changes: 11 additions & 0 deletions
11
other_models/kmeans_gray/cluster_freqStd/2clusters/scatter.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
import pylab as pl | ||
import numpy as np | ||
|
||
mark = ['ob', 'or', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr'] | ||
|
||
data = np.genfromtxt("2 clusters of point at 3.1km.txt") | ||
for i in range(data.shape[0]): | ||
pl.plot(data[i,0],data[i,1], mark[np.int(data[i,2])]) | ||
pl.xlabel("timeStd / V") | ||
pl.ylabel("freqCorr") | ||
pl.show() |
11 changes: 11 additions & 0 deletions
11
other_models/kmeans_gray/cluster_freqStd/3clusters/scatter.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
import pylab as pl | ||
import numpy as np | ||
|
||
mark = ['og', 'ob', 'or', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr'] | ||
|
||
data = np.genfromtxt("3 clusters of point at 3.6km.txt") | ||
for i in range(data.shape[0]): | ||
pl.plot(data[i,0],data[i,1], mark[np.int(data[i,2])]) | ||
pl.xlabel("timeStd / V") | ||
pl.ylabel("freqCorr") | ||
pl.show() |
11 changes: 11 additions & 0 deletions
11
other_models/kmeans_gray/cluster_freqStd/4clusters/scatter.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
import pylab as pl | ||
import numpy as np | ||
|
||
mark = ['ok', 'og', 'ob', 'or', '^r', '+r', 'sr', 'dr', '<r', 'pr'] | ||
|
||
data = np.genfromtxt("4 clusters of point at 3.1km.txt") | ||
for i in range(data.shape[0]): | ||
pl.plot(data[i,0],data[i,1], mark[np.int(data[i,2])]) | ||
pl.xlabel("timeStd / V") | ||
pl.ylabel("freqCorr") | ||
pl.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
import pylab as pl | ||
import numpy as np | ||
|
||
mark = ['ob', 'or', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr'] | ||
|
||
data = np.genfromtxt("2 clusters of point at 3.6km.txt") | ||
for i in range(data.shape[0]): | ||
pl.plot(data[i,0],data[i,1], mark[np.int(data[i,2])]) | ||
pl.xlabel("timeStd / V") | ||
pl.ylabel("freqCorr") | ||
pl.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
import pylab as pl | ||
import numpy as np | ||
|
||
data = np.genfromtxt('freq corr of point at 3.6km.txt') | ||
|
||
# x = np.linspace(0,1728,1728) | ||
pl.xlim(0, data.shape[0]) | ||
# pl.ylim(0.6) | ||
pl.plot(data) | ||
|
||
# x = 0.65*np.ones(data.shape[0]) | ||
# pl.plot(x, color='red') | ||
|
||
pl.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
import numpy as np | ||
|
||
data = np.genfromtxt("freq corr of point at 3.1km.txt") | ||
print(data.shape) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
from travel_path import * | ||
|
||
freqCorr_files = travel_txt("freqCorr/") | ||
timeStd_files = travel_txt("timeStd/") | ||
|
||
for i in range(freqCorr_files.shape[0]): | ||
SpacePoint = freqCorr_files[i].split(' ')[-1] | ||
SpacePoint = SpacePoint.split('.')[0] + '.' + SpacePoint.split('.')[1] + '.' + SpacePoint.split('.')[-1] | ||
SpacePoint1 = timeStd_files[i].split('_')[-1] | ||
SpacePoint1 = SpacePoint1.split('.')[0] + '.' + SpacePoint1.split('.')[1] + '.' + SpacePoint.split('.')[-1] | ||
if SpacePoint == SpacePoint1: | ||
print("Bingo!") | ||
print(SpacePoint) | ||
|
||
data_freCorr = np.genfromtxt(freqCorr_files[i]) | ||
data_timeStd = np.genfromtxt(timeStd_files[i]) | ||
data_timeStd = np.transpose(data_timeStd) | ||
data_timeStd = data_timeStd.reshape(1728, ) | ||
# Normalization | ||
data_timeStd = data_timeStd/np.max(data_timeStd) | ||
data_freqStd = np.column_stack((data_timeStd, data_freCorr)) | ||
print(data_freqStd.shape) | ||
|
||
np.savetxt("freqStd/freqStd of point at " + SpacePoint, data_freqStd) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# -*- coding: utf-8 -*- | ||
import cv2 | ||
from travel_path import * | ||
import math | ||
|
||
# calculate Euclidean distance | ||
def euclDistance(vector1, vector2): | ||
return math.sqrt(sum(pow(vector2 - vector1, 2))) | ||
|
||
freqStd_files = travel_txt("freqStd/") | ||
|
||
# define criteria, number of clusters(K) and apply kmeans() | ||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) | ||
|
||
for i in range(freqStd_files.shape[0]): | ||
SpacePoint = freqStd_files[i].split(' ')[-1] | ||
SpacePoint = SpacePoint.split('.')[0] + '.' + SpacePoint.split('.')[1] + '.' + SpacePoint.split('.')[-1] | ||
print(SpacePoint) | ||
|
||
data = np.genfromtxt(freqStd_files[i]) | ||
data_1 = data | ||
data_1 = np.float32(data_1) | ||
# k聚类 | ||
ret, label, center = cv2.kmeans(data_1, 2, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) | ||
print(label.shape) | ||
|
||
suffix = np.array([[0],[1]]) | ||
center = np.column_stack((center, suffix)) | ||
print(center) | ||
for j in range(2): | ||
for k in range(j+1,2): | ||
vec0 = np.array([0,0]) | ||
vec1 = center[j,:2] | ||
vec2 = center[k,:2] | ||
if euclDistance(vec1,vec0) > euclDistance(vec2,vec0): | ||
tmp1 = np.copy(center[k,:]) | ||
tmp2 = np.copy(center[j,:]) | ||
center[j,:] = tmp1 | ||
center[k,:] = tmp2 | ||
print(center) | ||
|
||
print(label) | ||
label1 = np.copy(label) | ||
for j in range(label.shape[0]): | ||
for k in range(2): | ||
if label[j,0] == center[k,2]: | ||
label1[j,0] = np.copy(k) | ||
print(label1) | ||
|
||
data_new = np.column_stack((data, label1)) | ||
print(data_new.shape) | ||
np.savetxt("cluster_freqStd/2clusters/2 clusters of point at " + SpacePoint, data_new) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
# -*- coding: utf-8 -*- | ||
import cv2 | ||
from travel_path import * | ||
|
||
freqStd_files = travel_txt("freqStd/") | ||
|
||
# define criteria, number of clusters(K) and apply kmeans() | ||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) | ||
|
||
for i in range(freqStd_files.shape[0]): | ||
SpacePoint = freqStd_files[i].split(' ')[-1] | ||
SpacePoint = SpacePoint.split('.')[0] + '.' + SpacePoint.split('.')[1] + '.' + SpacePoint.split('.')[-1] | ||
print(SpacePoint) | ||
|
||
data = np.genfromtxt(freqStd_files[i]) | ||
data_multi = [] | ||
for j in range(data.shape[0]): | ||
if data_multi == []: | ||
data_multi = data[j,0] * data[j,1] | ||
else: | ||
data_tmp = data[j,0] * data[j,1] | ||
data_multi = np.column_stack((data_multi, data_tmp)) | ||
data_multi = np.float32(data_multi) | ||
# k聚类 | ||
ret, label, center = cv2.kmeans(data_multi, 2, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) | ||
print(label.shape) | ||
|
||
suffix = np.array([[0],[1]]) | ||
center = np.column_stack((center, suffix)) | ||
print(center) | ||
for j in range(2): | ||
for k in range(j+1,2): | ||
if center[j,0] > center[k,0]: | ||
tmp1 = np.copy(center[k,:]) | ||
tmp2 = np.copy(center[j,:]) | ||
center[j,:] = tmp1 | ||
center[k,:] = tmp2 | ||
print(center) | ||
|
||
print(label) | ||
label1 = np.copy(label) | ||
for j in range(label.shape[0]): | ||
for k in range(2): | ||
if label[j,0] == center[k,1]: | ||
label1[j,0] = np.copy(k) | ||
print(label1) | ||
|
||
data_new = np.column_stack((data, label1)) | ||
print(data_new.shape) | ||
np.savetxt("cluster_freqXstd/2 clusters of point at " + SpacePoint, data_new) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# -*- coding: utf-8 -*- | ||
import cv2 | ||
from travel_path import * | ||
import math | ||
|
||
# calculate Euclidean distance | ||
def euclDistance(vector1, vector2): | ||
return math.sqrt(sum(pow(vector2 - vector1, 2))) | ||
|
||
freqStd_files = travel_txt("freqStd/") | ||
|
||
# define criteria, number of clusters(K) and apply kmeans() | ||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) | ||
|
||
for i in range(freqStd_files.shape[0]): | ||
SpacePoint = freqStd_files[i].split(' ')[-1] | ||
SpacePoint = SpacePoint.split('.')[0] + '.' + SpacePoint.split('.')[1] + '.' + SpacePoint.split('.')[-1] | ||
print(SpacePoint) | ||
|
||
data = np.genfromtxt(freqStd_files[i]) | ||
data_1 = data | ||
data_1 = np.float32(data_1) | ||
# k聚类 | ||
ret, label, center = cv2.kmeans(data_1, 3, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) | ||
print(label.shape) | ||
|
||
suffix = np.array([[0],[1],[2]]) | ||
center = np.column_stack((center, suffix)) | ||
print(center) | ||
for j in range(3): | ||
for k in range(j+1,3): | ||
vec0 = np.array([0, 0]) | ||
vec1 = center[j, :2] | ||
vec2 = center[k, :2] | ||
if euclDistance(vec1, vec0) > euclDistance(vec2, vec0): | ||
tmp1 = np.copy(center[k,:]) | ||
tmp2 = np.copy(center[j,:]) | ||
center[j,:] = tmp1 | ||
center[k,:] = tmp2 | ||
print(center) | ||
|
||
print(label) | ||
label1 = np.copy(label) | ||
for j in range(label.shape[0]): | ||
for k in range(3): | ||
if label[j,0] == center[k,2]: | ||
label1[j,0] = np.copy(k) | ||
print(label1) | ||
|
||
data_new = np.column_stack((data, label1)) | ||
print(data_new.shape) | ||
np.savetxt("cluster_freqStd/3clusters/3 clusters of point at " + SpacePoint, data_new) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# -*- coding: utf-8 -*- | ||
import cv2 | ||
from travel_path import * | ||
import math | ||
|
||
# calculate Euclidean distance | ||
def euclDistance(vector1, vector2): | ||
return math.sqrt(sum(pow(vector2 - vector1, 2))) | ||
|
||
freqStd_files = travel_txt("freqStd/") | ||
|
||
# define criteria, number of clusters(K) and apply kmeans() | ||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) | ||
|
||
for i in range(freqStd_files.shape[0]): | ||
SpacePoint = freqStd_files[i].split(' ')[-1] | ||
SpacePoint = SpacePoint.split('.')[0] + '.' + SpacePoint.split('.')[1] + '.' + SpacePoint.split('.')[-1] | ||
print(SpacePoint) | ||
|
||
data = np.genfromtxt(freqStd_files[i]) | ||
data_1 = data | ||
data_1 = np.float32(data_1) | ||
# k聚类 | ||
ret, label, center = cv2.kmeans(data_1, 4, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) | ||
print(label.shape) | ||
|
||
suffix = np.array([[0],[1],[2],[3]]) | ||
center = np.column_stack((center, suffix)) | ||
print(center) | ||
for j in range(4): | ||
for k in range(j+1,4): | ||
vec0 = np.array([0, 0]) | ||
vec1 = center[j, :2] | ||
vec2 = center[k, :2] | ||
if euclDistance(vec1, vec0) > euclDistance(vec2, vec0): | ||
tmp1 = np.copy(center[k,:]) | ||
tmp2 = np.copy(center[j,:]) | ||
center[j,:] = tmp1 | ||
center[k,:] = tmp2 | ||
print(center) | ||
|
||
print(label) | ||
label1 = np.copy(label) | ||
for j in range(label.shape[0]): | ||
for k in range(4): | ||
if label[j,0] == center[k,2]: | ||
label1[j,0] = np.copy(k) | ||
print(label1) | ||
|
||
data_new = np.column_stack((data, label1)) | ||
print(data_new.shape) | ||
np.savetxt("cluster_freqStd/4clusters/4 clusters of point at " + SpacePoint, data_new) |
Oops, something went wrong.