Skip to content

Commit

Permalink
Update benchmarking code and remove empty files
Browse files Browse the repository at this point in the history
  • Loading branch information
Faraz9877 committed Dec 12, 2024
1 parent 67aae3e commit 154814f
Show file tree
Hide file tree
Showing 8 changed files with 392 additions and 807 deletions.
359 changes: 359 additions & 0 deletions benchmarks/cutlass_benchmarks/sparse_benchmarks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,359 @@
import argparse
import copy
import itertools
import pickle as pkl
import time
from typing import Callable, Iterable, List, Tuple

import torch
import torch.utils.benchmark as TBenchmark
from torch.utils.benchmark import Measurement as TMeasurement
from utils import make_rand_sparse_tensors
from weight_shapes import WEIGHT_SHAPES

from vllm import _custom_ops as ops
from vllm.utils import FlexibleArgumentParser

DEFAULT_MODELS = list(WEIGHT_SHAPES.keys())
DEFAULT_BATCH_SIZES = [1, 16, 32, 64, 128, 256, 512]
DEFAULT_TP_SIZES = [1]


# bench
def bench_fn(label: str, sub_label: str, description: str, fn: Callable, *args,
**kwargs) -> TMeasurement:
min_run_time = 1

globals = {
"args": args,
"kwargs": kwargs,
"fn": fn,
}
return TBenchmark.Timer(
stmt="fn(*args, **kwargs)",
globals=globals,
label=label,
sub_label=sub_label,
description=description,
).blocked_autorange(min_run_time=min_run_time)


def bench_int8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
assert dtype == torch.int8
b_compressed, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)

timers = []
# pytorch impl - bfloat16
timers.append(
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16),
b.to(dtype=torch.bfloat16)))

# pytorch impl - float16
timers.append(
bench_fn(label, sub_label,
"pytorch_fp16_fp16_fp16_matmul-no-scales", torch.mm,
a.to(dtype=torch.float16), b.to(dtype=torch.float16)))

# cutlass impl
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))

# cutlass with bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_mm_bias",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b, torch.bfloat16,
bias))

# cutlass sparse impl
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, scale_b,

Check failure on line 77 in benchmarks/cutlass_benchmarks/sparse_benchmarks.py

View workflow job for this annotation

GitHub Actions / ruff (3.12)

Ruff (E501)

benchmarks/cutlass_benchmarks/sparse_benchmarks.py:77:81: E501 Line too long (84 > 80)
torch.bfloat16))

# cutlass sparse with bias
timers.append(
bench_fn(label, sub_label, "cutlass_i8_i8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, scale_b, torch.bfloat16,

Check failure on line 83 in benchmarks/cutlass_benchmarks/sparse_benchmarks.py

View workflow job for this annotation

GitHub Actions / ruff (3.12)

Ruff (E501)

benchmarks/cutlass_benchmarks/sparse_benchmarks.py:83:81: E501 Line too long (100 > 80)
bias))


return timers


def bench_fp8(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
assert dtype == torch.float8_e4m3fn
b_compressed, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n, k)

Check failure on line 93 in benchmarks/cutlass_benchmarks/sparse_benchmarks.py

View workflow job for this annotation

GitHub Actions / ruff (3.12)

Ruff (E501)

benchmarks/cutlass_benchmarks/sparse_benchmarks.py:93:81: E501 Line too long (82 > 80)
scale_a = torch.tensor(1.0, device="cuda", dtype=torch.float32)
scale_b = torch.tensor(1.0, device="cuda", dtype=torch.float32)
bias = torch.zeros((n, ), device="cuda", dtype=torch.bfloat16)

timers = []

# pytorch impl w. bf16
timers.append(
bench_fn(label, sub_label, "pytorch_bf16_bf16_bf16_matmul-no-scales",
torch.mm, a.to(dtype=torch.bfloat16, device="cuda"),
b.to(dtype=torch.bfloat16, device="cuda")))

# pytorch impl: bf16 output, without fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16))

# pytorch impl: bf16 output, with fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_bf16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.bfloat16,
use_fast_accum=True))

# pytorch impl: fp16 output, without fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16))

# pytorch impl: fp16 output, with fp8 fast accum
timers.append(
bench_fn(label,
sub_label,
"pytorch_fp8_fp8_fp16_scaled_mm_fast_accum",
torch._scaled_mm,
a,
b,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=torch.float16,
use_fast_accum=True))

# cutlass impl: bf16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_mm",
ops.cutlass_scaled_mm, a, b, scale_a, scale_b,
torch.bfloat16))

# cutlass impl: bf16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, scale_b,

Check failure on line 165 in benchmarks/cutlass_benchmarks/sparse_benchmarks.py

View workflow job for this annotation

GitHub Actions / ruff (3.12)

Ruff (E501)

benchmarks/cutlass_benchmarks/sparse_benchmarks.py:165:81: E501 Line too long (84 > 80)
torch.bfloat16))

# cutlass impl: fp16 output
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_sparse_mm",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, scale_b, torch.float16))

Check failure on line 171 in benchmarks/cutlass_benchmarks/sparse_benchmarks.py

View workflow job for this annotation

GitHub Actions / ruff (3.12)

Ruff (E501)

benchmarks/cutlass_benchmarks/sparse_benchmarks.py:171:81: E501 Line too long (100 > 80)

# cutlass impl: bf16 output, with bias
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_bf16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, scale_b, torch.bfloat16,

Check failure on line 176 in benchmarks/cutlass_benchmarks/sparse_benchmarks.py

View workflow job for this annotation

GitHub Actions / ruff (3.12)

Ruff (E501)

benchmarks/cutlass_benchmarks/sparse_benchmarks.py:176:81: E501 Line too long (100 > 80)
bias))

# cutlass impl: fp16 output, with bias
timers.append(
bench_fn(label, sub_label, "cutlass_fp8_fp8_fp16_scaled_sparse_mm_bias",
ops.cutlass_scaled_sparse_mm, a, b_compressed, e, scale_a, scale_b, torch.float16,

Check failure on line 182 in benchmarks/cutlass_benchmarks/sparse_benchmarks.py

View workflow job for this annotation

GitHub Actions / ruff (3.12)

Ruff (E501)

benchmarks/cutlass_benchmarks/sparse_benchmarks.py:182:81: E501 Line too long (99 > 80)
bias.to(dtype=torch.float16)))

return timers


def bench(dtype: torch.dtype, m: int, k: int, n: int, label: str,
sub_label: str) -> Iterable[TMeasurement]:
if dtype == torch.int8:
return bench_int8(dtype, m, k, n, label, sub_label)
if dtype == torch.float8_e4m3fn:
return bench_fp8(dtype, m, k, n, label, sub_label)
raise ValueError("unsupported type")


# runner
def print_timers(timers: Iterable[TMeasurement]):
compare = TBenchmark.Compare(timers)
compare.print()


def run(dtype: torch.dtype,
MKNs: Iterable[Tuple[int, int, int]]) -> Iterable[TMeasurement]:
results = []
for m, k, n in MKNs:
timers = bench(dtype, m, k, n, f"scaled-{dtype}-gemm",
f"MKN=({m}x{k}x{n})")
print_timers(timers)
results.extend(timers)

return results


# output makers
def make_output(data: Iterable[TMeasurement],
MKNs: Iterable[Tuple[int, int, int]],
base_description: str,
timestamp=None):
print(f"== All Results {base_description} ====")
print_timers(data)

# pickle all the results
timestamp = int(time.time()) if timestamp is None else timestamp
with open(f"{base_description}-{timestamp}.pkl", "wb") as f:
pkl.dump(data, f)


# argparse runners


def run_square_bench(args):
dim_sizes = list(
range(args.dim_start, args.dim_end + 1, args.dim_increment))
MKNs = list(zip(dim_sizes, dim_sizes, dim_sizes))
data = run(args.dtype, MKNs)

make_output(data, MKNs, f"square_bench-{args.dtype}")


def run_range_bench(args):
dim_sizes = list(range(args.dim_start, args.dim_end, args.dim_increment))
n = len(dim_sizes)
Ms = [args.m_constant] * n if args.m_constant is not None else dim_sizes
Ks = [args.k_constant] * n if args.k_constant is not None else dim_sizes
Ns = [args.n_constant] * n if args.n_constant is not None else dim_sizes
MKNs = list(zip(Ms, Ks, Ns))
data = run(args.dtype, MKNs)

make_output(data, MKNs, f"range_bench-{args.dtype}")


def run_model_bench(args):
print("Benchmarking models:")
for i, model in enumerate(args.models):
print(f"[{i}] {model}")

def model_shapes(model_name: str, tp_size: int) -> List[Tuple[int, int]]:
KNs = []
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model_name]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
KNs.append(KN)
return KNs

model_bench_data = []
models_tps = list(itertools.product(args.models, args.tp_sizes))
for model, tp_size in models_tps:
Ms = args.batch_sizes
KNs = model_shapes(model, tp_size)
MKNs = []
for m in Ms:
for k, n in KNs:
MKNs.append((m, k, n))

data = run(args.dtype, MKNs)
model_bench_data.append(data)

# Print all results
for data, model_tp in zip(model_bench_data, models_tps):
model, tp_size = model_tp
print(f"== Results {args.dtype} {model}-TP{tp_size} ====")
print_timers(data)

timestamp = int(time.time())

all_data = []
for d in model_bench_data:
all_data.extend(d)
# pickle all data
with open(f"model_bench-{args.dtype}-{timestamp}.pkl", "wb") as f:
pkl.dump(all_data, f)


if __name__ == '__main__':

def to_torch_dtype(dt):
if dt == "int8":
return torch.int8
if dt == "fp8":
return torch.float8_e4m3fn
raise ValueError("unsupported dtype")

parser = FlexibleArgumentParser(
description="""
Benchmark Cutlass GEMM.
To run square GEMMs:
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 square_bench --dim-start 128 --dim-end 512 --dim-increment 64
To run constant N and K and sweep M:
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 range_bench --dim-start 128 --dim-end 512 --dim-increment 64 --n-constant 16384 --k-constant 16384
To run dimensions from a model:
python3 ./benchmarks/cutlass_benchmarks/sparse_benchmarks.py --dtype fp8 model_bench --models meta-llama/Llama-2-7b-hf --batch-sizes 16 --tp-sizes 1
Output:
- a .pkl file, that is a list of raw torch.benchmark.utils.Measurements for the pytorch and cutlass implementations for the various GEMMs.
""", # noqa: E501
formatter_class=argparse.RawTextHelpFormatter)

parser.add_argument("--dtype",
type=to_torch_dtype,
required=True,
help="Available options are ['int8', 'fp8']")
subparsers = parser.add_subparsers(dest="cmd")

square_parser = subparsers.add_parser("square_bench")
square_parser.add_argument("--dim-start", type=int, required=True)
square_parser.add_argument("--dim-end", type=int, required=True)
square_parser.add_argument("--dim-increment", type=int, required=True)
square_parser.set_defaults(func=run_square_bench)

range_parser = subparsers.add_parser("range_bench")
range_parser.add_argument("--dim-start", type=int, required=True)
range_parser.add_argument("--dim-end", type=int, required=True)
range_parser.add_argument("--dim-increment", type=int, required=True)
range_parser.add_argument("--m-constant", type=int, default=None)
range_parser.add_argument("--n-constant", type=int, default=None)
range_parser.add_argument("--k-constant", type=int, default=None)
range_parser.set_defaults(func=run_range_bench)

model_parser = subparsers.add_parser("model_bench")
model_parser.add_argument("--models",
nargs="+",
type=str,
default=DEFAULT_MODELS,
choices=WEIGHT_SHAPES.keys())
model_parser.add_argument("--tp-sizes",
nargs="+",
type=int,
default=DEFAULT_TP_SIZES)
model_parser.add_argument("--batch-sizes",
nargs="+",
type=int,
default=DEFAULT_BATCH_SIZES)
model_parser.set_defaults(func=run_model_bench)

args = parser.parse_args()
args.func(args)
Loading

0 comments on commit 154814f

Please sign in to comment.