Skip to content

Commit

Permalink
add awq moe
Browse files Browse the repository at this point in the history
  • Loading branch information
dsikka committed Sep 26, 2024
1 parent fa23e51 commit 000796a
Show file tree
Hide file tree
Showing 2 changed files with 188 additions and 5 deletions.
191 changes: 187 additions & 4 deletions vllm/model_executor/layers/quantization/awq.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,22 @@
from typing import Any, Dict, List, Optional
from typing import Callable, Any, Dict, List, Optional

import torch

from torch.nn import Parameter
from vllm import _custom_ops as ops
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.fused_moe.layer import (
FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported)
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase, set_weight_attrs
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.parameter import (GroupQuantScaleParameter,
PackedvLLMParameter)

from vllm.model_executor.layers.quantization.utils.marlin_utils import (
apply_gptq_marlin_linear, check_marlin_supported, marlin_is_k_full,
marlin_make_empty_g_idx, marlin_make_workspace, marlin_moe_permute_scales,
marlin_permute_scales, marlin_repeat_scales_on_all_ranks,
marlin_sort_g_idx, replace_tensor, verify_marlin_supported,
verify_marlin_supports_shape)

class AWQConfig(QuantizationConfig):
"""Config class for AWQ.
Expand Down Expand Up @@ -64,9 +72,11 @@ def from_config(cls, config: Dict[str, Any]) -> "AWQConfig":
return cls(weight_bits, group_size, zero_point)

def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["AWQLinearMethod"]:
prefix: str) -> Optional["QuantizedMethodBase"]:
if isinstance(layer, LinearBase):
return AWQLinearMethod(self)
elif isinstance(layer, FusedMoE):
return AWQMoEMethod(self)
return None

def get_scaled_act_names(self) -> List[str]:
Expand Down Expand Up @@ -170,3 +180,176 @@ def apply(self,
if bias is not None:
out.add_(bias)
return out.reshape(out_shape)

class AWQMoEMethod(FusedMoEMethodBase):

def __init__(self, quant_config: AWQConfig):
self.quant_config = quant_config
self.num_bits = self.quant_config.weight_bits
self.packed_factor = self.quant_config.pack_factor
self.group_size = self.quant_config.group_size

def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size: int,
params_dtype: torch.dtype, **extra_weight_attrs):
extra_weight_attrs.update({
"is_transposed": True,
"quant_method": "group",
})

w13_qweight = Parameter(torch.empty(num_experts,
hidden_size,
2 * intermediate_size //
self.quant_config.pack_factor,
dtype=torch.int32),
requires_grad=False)
layer.register_parameter("w13_qweight", w13_qweight)
set_weight_attrs(w13_qweight, extra_weight_attrs)

w2_qweight = Parameter(torch.empty(num_experts,
intermediate_size,
hidden_size //
self.quant_config.pack_factor,
dtype=torch.int32),
requires_grad=False)
layer.register_parameter("w2_qweight", w2_qweight)
set_weight_attrs(w2_qweight, extra_weight_attrs)

num_groups_w13 = hidden_size // self.quant_config.group_size
num_groups_w2 = intermediate_size // self.quant_config.group_size

# WEIGHT_SCALES
# Allocate 2 scales for w1 and w3 respectively.
w13_scales = Parameter(torch.empty(num_experts,
num_groups_w13,
intermediate_size * 2,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w13_scales", w13_scales)
set_weight_attrs(w13_scales, extra_weight_attrs)

w2_scales = Parameter(torch.empty(num_experts,
num_groups_w2,
hidden_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w2_scales", w2_scales)
set_weight_attrs(w2_scales, extra_weight_attrs)

# WEIGHT_ZERO_POINT
# Allocate 2 zero points for w1 and w3 respectively.
w13_qzeros = Parameter(torch.empty(num_experts,
num_groups_w13,
2 * intermediate_size //
self.quant_config.pack_factor,
dtype=torch.int32),
requires_grad=False)
layer.register_parameter("w13_qzeros", w13_qzeros)
set_weight_attrs(w13_qzeros, extra_weight_attrs)

w2_qzeros = Parameter(torch.empty(num_experts,
num_groups_w2,
hidden_size //
self.quant_config.pack_factor,
dtype=torch.int32),
requires_grad=False)
layer.register_parameter("w2_qzeros", w2_qzeros)
set_weight_attrs(w2_qzeros, extra_weight_attrs)

def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
num_experts = layer.w13_qweight.shape[0]
device = layer.w13_qweight.device

layer.w13_g_idx = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
layer.w2_g_idx = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
layer.w13_g_idx_sort_indices = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
layer.w2_g_idx_sort_indices = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
marlin_w13_qweight = ops.gptq_marlin_moe_repack(
layer.w13_qweight,
layer.w13_g_idx_sort_indices,
layer.w13_qweight.shape[1],
layer.w13_qweight.shape[2] * self.packed_factor,
self.num_bits,
)
replace_tensor(layer, "w13_qweight", marlin_w13_qweight)
marlin_w2_qweight = ops.gptq_marlin_moe_repack(
layer.w2_qweight,
layer.w2_g_idx_sort_indices,
layer.w2_qweight.shape[1],
layer.w2_qweight.shape[2] * self.packed_factor,
self.num_bits,
)
replace_tensor(layer, "w2_qweight", marlin_w2_qweight)
# Repack scales
marlin_w13_scales = marlin_moe_permute_scales(
s=layer.w13_scales,
size_k=layer.intermediate_size_per_partition,
size_n=layer.w13_scales.shape[2],
group_size=self.group_size
)

replace_tensor(layer, "w13_scales", marlin_w13_scales)
marlin_w2_scales = marlin_moe_permute_scales(
s=layer.w2_scales,
size_k=layer.w2_scales.shape[1] ,
size_n=layer.w2_scales.shape[2] * self.packed_factor,
group_size=self.group_size,
)
replace_tensor(layer, "w2_scales", marlin_w2_scales)

def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool = True,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
) -> torch.Tensor:

from vllm.model_executor.layers.fused_moe.fused_marlin_moe import (
fused_marlin_moe)

topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function)

return fused_marlin_moe(
x,
layer.w13_qweight,
layer.w2_qweight,
layer.w13_scales,
layer.w2_scales,
router_logits,
topk_weights,
topk_ids,
g_idx1=layer.w13_g_idx,
g_idx2=layer.w2_g_idx,
sort_indices1=layer.w13_g_idx_sort_indices,
sort_indices2=layer.w2_g_idx_sort_indices,
num_bits=self.num_bits)
2 changes: 1 addition & 1 deletion vllm/model_executor/model_loader/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ def get_model_architecture(
architectures = getattr(model_config.hf_config, "architectures", [])
# Special handling for quantized Mixtral.
# FIXME(woosuk): This is a temporary hack.
mixtral_supported = ["fp8", "compressed-tensors", "gptq_marlin"]
mixtral_supported = ["fp8", "compressed-tensors", "gptq_marlin", "awq"]

if (model_config.quantization is not None
and model_config.quantization not in mixtral_supported
Expand Down

0 comments on commit 000796a

Please sign in to comment.