Skip to content

nestorcolt/cognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

COGNITION

Cognition AI

A production-ready virtual interface for building and deploying intelligent agents, powered by CrewAI and enhanced with enterprise-grade features through Cognition Core.

Overview

Cognition serves as an intelligent virtual interface for task orchestration and agent management. It prevents the "agent graveyard" problem by providing:

  1. Standardized Agent Development

    • Consistent patterns through Cognition Core
    • Reusable tool ecosystems
    • Unified configuration management
  2. Intelligent Task Management

    • Hierarchical task planning with manager agents
    • Dynamic tool allocation
    • Context-aware execution
  3. Enterprise Integration

    • Cloud-native deployment options
    • Scalable memory systems
    • Production monitoring
  4. Virtual Interface

    • Natural language task submission
    • Execution feedback and monitoring
    • Context-aware responses

Architecture

Core Components

1. Virtual Interface Layer

  • Manager Agent: Orchestrates task planning and execution
  • Chat LLM: Handles natural language interactions
  • Cognitive Architecture: Processes tasks and provides intelligent feedback

2. Task Management

  • Task Planning: Dynamic task breakdown and allocation
  • Context Management: Maintains execution context
  • Tool Selection: Intelligent tool assignment

3. Memory Systems

  • Short-term: Quick access to recent context
  • Long-term: Persistent knowledge storage
  • Entity Memory: Relationship tracking

4. Tool Integration

  • Dynamic Loading: Auto-discovery of available tools
  • Version Management: Tool compatibility tracking
  • Response Validation: Quality assurance

Usage Patterns

1. Container Deployment

from cognition import Cognition

# Initialize with default settings
cognition = Cognition()

# Start API server
app = cognition.api

2. Package Integration

from cognition import Cognition

# Custom configuration
cognition = Cognition(
    config_dir="path/to/config",
    memory_enabled=True,
    tool_discovery=True
)

# Create custom agent
agent = cognition.create_agent(
    role="researcher",
    tools=["web_search", "document_reader"]
)

Configuration

Agent Configuration (agents.yaml)

researcher:
  role: "Research Specialist"
  goal: "Gather and analyze information"
  backstory: "Experienced research analyst with expertise in data analysis"
  llm: "gpt-4"
  tools:
    - web_search
    - document_reader
    - data_analyzer

manager:
  role: "Task Coordinator"
  goal: "Orchestrate and optimize task execution"
  llm: "gpt-4"
  verbose: true

Task Configuration (tasks.yaml)

research_task:
  description: "Conduct comprehensive research on {topic}"
  expected_output: "Detailed analysis report"
  tools:
    - web_search
    - document_reader
  context_required: true

Enterprise Features

1. Scalability

  • Horizontal scaling through containerization
  • Independent tool scaling
  • Distributed memory systems

2. Monitoring

  • Task execution metrics
  • Agent performance tracking
  • Resource utilization

3. Security

  • Role-based access control
  • Tool usage policies
  • Audit logging

Development Workflow

  1. Local Development

    # Install dependencies
    pip install cognition-ai[dev]
    
    # Run tests
    pytest tests/
    
    # Start local server
    cognition serve
  2. Container Deployment

    # Build container
    docker build -t cognition .
    
    # Run container
    docker run -p 8000:8000 cognition

Environment Variables

Required:

  • PORTKEY_API_KEY: Portkey API key
  • PORTKEY_VIRTUAL_KEY: Portkey virtual key

Optional:

  • COGNITION_CONFIG_DIR: Configuration directory
  • MEMORY_ENABLED: Enable memory systems
  • TOOL_DISCOVERY: Enable tool discovery
  • LOG_LEVEL: Logging level

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Submit a pull request with tests

License

MIT

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published