Skip to content

Commit

Permalink
Avoid jpeg compression artifacts when training Mip-NeRF360. (#507)
Browse files Browse the repository at this point in the history
* resize to png

* helper function

* print statement
  • Loading branch information
jefequien authored Jan 15, 2025
1 parent 1a1e0cc commit 0880d2b
Show file tree
Hide file tree
Showing 4 changed files with 43 additions and 9 deletions.
6 changes: 3 additions & 3 deletions examples/benchmarks/compression/mcmc.sh
Original file line number Diff line number Diff line change
Expand Up @@ -32,13 +32,13 @@ do
# train without eval
CUDA_VISIBLE_DEVICES=0 python simple_trainer.py mcmc --eval_steps -1 --disable_viewer --data_factor $DATA_FACTOR \
--strategy.cap-max $CAP_MAX \
--data_dir data/360_v2/$SCENE/ \
--data_dir $SCENE_DIR/$SCENE/ \
--result_dir $RESULT_DIR/$SCENE/

# eval: use vgg for lpips to align with other benchmarks
CUDA_VISIBLE_DEVICES=0 python simple_trainer.py mcmc --disable_viewer --data_factor $DATA_FACTOR \
--strategy.cap-max $CAP_MAX \
--data_dir data/360_v2/$SCENE/ \
--data_dir $SCENE_DIR/$SCENE/ \
--result_dir $RESULT_DIR/$SCENE/ \
--lpips_net vgg \
--compression png \
Expand All @@ -49,7 +49,7 @@ done
if command -v zip &> /dev/null
then
echo "Zipping results"
python benchmarks/compression/summarize_stats.py --results_dir $RESULT_DIR
python benchmarks/compression/summarize_stats.py --results_dir $RESULT_DIR --scenes $SCENE_LIST
else
echo "zip command not found, skipping zipping"
fi
2 changes: 1 addition & 1 deletion examples/benchmarks/compression/mcmc_tt.sh
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ SCENE_LIST="train truck"
# CAP_MAX=360000

# # 0.49M GSs
# RESULT_DIR="results/benchmark_tt_mcmc_tt_0_49M_png_compression"
# RESULT_DIR="results/benchmark_tt_mcmc_0_49M_png_compression"
# CAP_MAX=490000

# 1M GSs
Expand Down
9 changes: 6 additions & 3 deletions examples/benchmarks/compression/summarize_stats.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,8 @@
import tyro


def main(results_dir: str, scenes: List[str]):
def main(results_dir: str, scenes: List[str], stage: str = "compress"):
print("scenes:", scenes)
stage = "compress"

summary = defaultdict(list)
for scene in scenes:
Expand All @@ -33,7 +32,11 @@ def main(results_dir: str, scenes: List[str]):
summary[k].append(v)

for k, v in summary.items():
print(k, np.mean(v))
summary[k] = np.mean(v)
summary["scenes"] = scenes

with open(os.path.join(results_dir, f"{stage}_summary.json"), "w") as f:
json.dump(summary, f, indent=2)


if __name__ == "__main__":
Expand Down
35 changes: 33 additions & 2 deletions examples/datasets/colmap.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
import os
import json
from tqdm import tqdm
from typing import Any, Dict, List, Optional
from typing_extensions import assert_never

import cv2
from PIL import Image
import imageio.v2 as imageio
import numpy as np
import torch
Expand All @@ -26,6 +28,31 @@ def _get_rel_paths(path_dir: str) -> List[str]:
return paths


def _resize_image_folder(image_dir: str, resized_dir: str, factor: int) -> str:
"""Resize image folder."""
print(f"Downscaling images by {factor}x from {image_dir} to {resized_dir}.")
os.makedirs(resized_dir, exist_ok=True)

image_files = _get_rel_paths(image_dir)
for image_file in tqdm(image_files):
image_path = os.path.join(image_dir, image_file)
resized_path = os.path.join(
resized_dir, os.path.splitext(image_file)[0] + ".png"
)
if os.path.isfile(resized_path):
continue
image = imageio.imread(image_path)[..., :3]
resized_size = (
int(round(image.shape[1] / factor)),
int(round(image.shape[0] / factor)),
)
resized_image = np.array(
Image.fromarray(image).resize(resized_size, Image.BICUBIC)
)
imageio.imwrite(resized_path, resized_image)
return resized_dir


class Parser:
"""COLMAP parser."""

Expand Down Expand Up @@ -163,6 +190,11 @@ def __init__(
# so we need to map between the two sorted lists of files.
colmap_files = sorted(_get_rel_paths(colmap_image_dir))
image_files = sorted(_get_rel_paths(image_dir))
if factor > 1 and os.path.splitext(image_files[0])[1].lower() == ".jpg":
image_dir = _resize_image_folder(
colmap_image_dir, image_dir + "_png", factor=factor
)
image_files = sorted(_get_rel_paths(image_dir))
colmap_to_image = dict(zip(colmap_files, image_files))
image_paths = [os.path.join(image_dir, colmap_to_image[f]) for f in image_names]

Expand Down Expand Up @@ -389,7 +421,6 @@ def __getitem__(self, item: int) -> Dict[str, Any]:
import argparse

import imageio.v2 as imageio
import tqdm

parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data/360_v2/garden")
Expand All @@ -404,7 +435,7 @@ def __getitem__(self, item: int) -> Dict[str, Any]:
print(f"Dataset: {len(dataset)} images.")

writer = imageio.get_writer("results/points.mp4", fps=30)
for data in tqdm.tqdm(dataset, desc="Plotting points"):
for data in tqdm(dataset, desc="Plotting points"):
image = data["image"].numpy().astype(np.uint8)
points = data["points"].numpy()
depths = data["depths"].numpy()
Expand Down

0 comments on commit 0880d2b

Please sign in to comment.