Skip to content

Commit

Permalink
Merge pull request #29 from leiyangleon/upgrade_to_v1p3p0
Browse files Browse the repository at this point in the history
upgrade autoRIFT and Geogrid to v1.3.0 for memory and runtime improvement
  • Loading branch information
leiyangleon authored May 24, 2021
2 parents b973c1b + 1557a51 commit e940875
Show file tree
Hide file tree
Showing 20 changed files with 2,528 additions and 686 deletions.
2 changes: 1 addition & 1 deletion geo_autoRIFT/SConscript
Original file line number Diff line number Diff line change
Expand Up @@ -34,4 +34,4 @@ autorift='autoRIFT/SConscript'
SConscript(autorift)

geogrid='geogrid/SConscript'
SConscript(geogrid)
SConscript(geogrid)
2 changes: 1 addition & 1 deletion geo_autoRIFT/autoRIFT/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,4 +13,4 @@
# this means ISCE support not available. Don't raise error. Allow standalone use
pass

__version__ = '1.2.0'
__version__ = '1.3.0'
167 changes: 110 additions & 57 deletions geo_autoRIFT/autoRIFT/autoRIFT.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def preprocess_filt_wal(self):
#
# self.I2 = (self.I2 - lp)


def preprocess_filt_hps(self):
'''
Do the pre processing using (orig - low-pass filter) = high-pass filter filter (3.9/5.3 min).
Expand Down Expand Up @@ -205,7 +205,7 @@ def preprocess_filt_lap(self):




def uniform_data_type(self):

import numpy as np
Expand Down Expand Up @@ -342,6 +342,7 @@ def autorift(self):
DispFiltC.FiltWidth = (self.FiltWidth - 1) * ChipSize0_GridSpacing_oversample_ratio + 1
DispFiltC.Iter = self.Iter - 1
DispFiltC.MadScalar = self.MadScalar
DispFiltC.colfiltChunkSize = self.colfiltChunkSize

DispFiltF = DISP_FILT()
overlap_f = 1 - 1 / ChipSize0_GridSpacing_oversample_ratio
Expand All @@ -350,6 +351,7 @@ def autorift(self):
DispFiltF.FiltWidth = (self.FiltWidth - 1) * ChipSize0_GridSpacing_oversample_ratio + 1
DispFiltF.Iter = self.Iter
DispFiltF.MadScalar = self.MadScalar
DispFiltF.colfiltChunkSize = self.colfiltChunkSize


for i in range(ChipSizeUniX.__len__()):
Expand All @@ -369,13 +371,13 @@ def autorift(self):
yGrid0 = np.round(yGrid0)

M0 = (ChipSizeX == 0) & (self.ChipSizeMinX <= ChipSizeUniX[i]) & (self.ChipSizeMaxX >= ChipSizeUniX[i])
M0 = colfilt(M0.copy(), (int(1/Scale*6), int(1/Scale*6)), 0)
M0 = colfilt(M0.copy(), (int(1/Scale*6), int(1/Scale*6)), 0, self.colfiltChunkSize)
M0 = cv2.resize(np.logical_not(M0).astype(np.uint8),dstShape[::-1],interpolation=cv2.INTER_NEAREST).astype(np.bool)

SearchLimitX0 = colfilt(self.SearchLimitX.copy(), (int(1/Scale), int(1/Scale)), 0) + colfilt(self.Dx0.copy(), (int(1/Scale), int(1/Scale)), 4)
SearchLimitY0 = colfilt(self.SearchLimitY.copy(), (int(1/Scale), int(1/Scale)), 0) + colfilt(self.Dy0.copy(), (int(1/Scale), int(1/Scale)), 4)
Dx00 = colfilt(self.Dx0.copy(), (int(1/Scale), int(1/Scale)), 2)
Dy00 = colfilt(self.Dy0.copy(), (int(1/Scale), int(1/Scale)), 2)
SearchLimitX0 = colfilt(self.SearchLimitX.copy(), (int(1/Scale), int(1/Scale)), 0, self.colfiltChunkSize) + colfilt(self.Dx0.copy(), (int(1/Scale), int(1/Scale)), 4, self.colfiltChunkSize)
SearchLimitY0 = colfilt(self.SearchLimitY.copy(), (int(1/Scale), int(1/Scale)), 0, self.colfiltChunkSize) + colfilt(self.Dy0.copy(), (int(1/Scale), int(1/Scale)), 4, self.colfiltChunkSize)
Dx00 = colfilt(self.Dx0.copy(), (int(1/Scale), int(1/Scale)), 2, self.colfiltChunkSize)
Dy00 = colfilt(self.Dy0.copy(), (int(1/Scale), int(1/Scale)), 2, self.colfiltChunkSize)

SearchLimitX0 = np.ceil(cv2.resize(SearchLimitX0,dstShape[::-1]))
SearchLimitY0 = np.ceil(cv2.resize(SearchLimitY0,dstShape[::-1]))
Expand Down Expand Up @@ -421,8 +423,8 @@ def autorift(self):
else:
filtWidth = (self.sparseSearchSampleRate * ChipSize0_GridSpacing_oversample_ratio)

SearchLimitX0C = colfilt(SearchLimitX0.copy(), (int(filtWidth), int(filtWidth)), 0)
SearchLimitY0C = colfilt(SearchLimitY0.copy(), (int(filtWidth), int(filtWidth)), 0)
SearchLimitX0C = colfilt(SearchLimitX0.copy(), (int(filtWidth), int(filtWidth)), 0, self.colfiltChunkSize)
SearchLimitY0C = colfilt(SearchLimitY0.copy(), (int(filtWidth), int(filtWidth)), 0, self.colfiltChunkSize)
SearchLimitX0C = SearchLimitX0C[rIdxC,cIdxC]
SearchLimitY0C = SearchLimitY0C[rIdxC,cIdxC]

Expand Down Expand Up @@ -499,8 +501,8 @@ def autorift(self):
DyF[np.logical_not(M0)] = np.nan

# Light interpolation with median filtered values: DxFM (filtered) and DxF (unfiltered)
DxFM = colfilt(DxF.copy(), (self.fillFiltWidth, self.fillFiltWidth), 3)
DyFM = colfilt(DyF.copy(), (self.fillFiltWidth, self.fillFiltWidth), 3)
DxFM = colfilt(DxF.copy(), (self.fillFiltWidth, self.fillFiltWidth), 3, self.colfiltChunkSize)
DyFM = colfilt(DyF.copy(), (self.fillFiltWidth, self.fillFiltWidth), 3, self.colfiltChunkSize)

# M0 is mask for original valid estimates, MF is mask for filled ones, MM is mask where filtered ones exist for filling
MF = np.zeros(M0.shape, dtype=np.bool)
Expand Down Expand Up @@ -529,16 +531,16 @@ def autorift(self):

# DxF0 (filtered) / Dx (unfiltered) is the result from earlier iterations, DxFM (filtered) / DxF (unfiltered) is that of the current iteration
# first colfilt nans within 2-by-2 area (otherwise 1 nan will contaminate all 4 points)
DxF0 = colfilt(Dx.copy(),(int(Scale+1),int(Scale+1)),2)
DxF0 = colfilt(Dx.copy(),(int(Scale+1),int(Scale+1)),2, self.colfiltChunkSize)
# then resize to half size using area (similar to averaging) to match the current iteration
DxF0 = cv2.resize(DxF0,dstShape[::-1],interpolation=cv2.INTER_AREA)
DyF0 = colfilt(Dy.copy(),(int(Scale+1),int(Scale+1)),2)
DyF0 = colfilt(Dy.copy(),(int(Scale+1),int(Scale+1)),2, self.colfiltChunkSize)
DyF0 = cv2.resize(DyF0,dstShape[::-1],interpolation=cv2.INTER_AREA)

# Note this DxFM is almost the same as DxFM (same variable) in the light interpolation (only slightly better); however, only small portion of it will be used later at locations specified by M0 and MF that are determined in the light interpolation. So even without the following two lines, the final Dx and Dy result is still the same.
# to fill out all of the missing values in DxF
DxFM = colfilt(DxF.copy(), (5,5), 3)
DyFM = colfilt(DyF.copy(), (5,5), 3)
DxFM = colfilt(DxF.copy(), (5,5), 3, self.colfiltChunkSize)
DyFM = colfilt(DyF.copy(), (5,5), 3, self.colfiltChunkSize)

# fill the current-iteration result with previously determined reliable estimates that are not searched in the current iteration
idx = np.isnan(DxF) & np.logical_not(np.isnan(DxF0))
Expand Down Expand Up @@ -578,7 +580,7 @@ def autorift(self):




def runAutorift(self):
'''
quick processing routine which calls autorift main function (user can define their own way by mimicing the workflow here).
Expand Down Expand Up @@ -661,6 +663,7 @@ def __init__(self):
self.FiltWidth = 5
self.Iter = 3
self.MadScalar = 4
self.colfiltChunkSize = 4
self.BuffDistanceC = 8
self.CoarseCorCutoff = 0.01
self.OverSampleRatio = 16
Expand Down Expand Up @@ -1346,44 +1349,93 @@ def arImgDisp_s(I1, I2, xGrid, yGrid, ChipSizeX, ChipSizeY, SearchLimitX, Search



def colfilt(A, kernelSize, option):

################## Chunked version of column filter
def colfilt(A, kernelSize, option, chunkSize=4):

from skimage.util import view_as_windows as viewW
import numpy as np

A = np.lib.pad(A,((int((kernelSize[0]-1)/2),int((kernelSize[0]-1)/2)),(int((kernelSize[1]-1)/2),int((kernelSize[1]-1)/2))),mode='constant',constant_values=np.nan)

B = viewW(A, kernelSize).reshape(-1,kernelSize[0]*kernelSize[1]).T[:,::1]

output_size = (A.shape[0]-kernelSize[0]+1,A.shape[1]-kernelSize[1]+1)
C = np.zeros(output_size,dtype=A.dtype)
if option == 0:# max
C = np.nanmax(B,axis=0).reshape(output_size)
elif option == 1:# min
C = np.nanmin(B,axis=0).reshape(output_size)
elif option == 2:# mean
C = np.nanmean(B,axis=0).reshape(output_size)
elif option == 3:# median
C = np.nanmedian(B,axis=0).reshape(output_size)
elif option == 4:# range
C = np.nanmax(B,axis=0).reshape(output_size) - np.nanmin(B,axis=0).reshape(output_size)
elif option == 6:# MAD (Median Absolute Deviation)
m = B.shape[0]
D = np.abs(B - np.dot(np.ones((m,1),dtype=A.dtype), np.array([np.nanmedian(B,axis=0)])))
C = np.nanmedian(D,axis=0).reshape(output_size)
elif option[0] == 5:# displacement distance count with option[1] being the threshold
m = B.shape[0]
c = int(np.round((m + 1) / 2)-1)
# c = 0
D = np.abs(B - np.dot(np.ones((m,1),dtype=A.dtype), np.array([B[c,:]])))
C = np.sum(D<option[1],axis=0).reshape(output_size)
else:
sys.exit('invalid option for columnwise neighborhood filtering')

C = C.astype(A.dtype)
chunkInds = int(A.shape[1]/chunkSize)
chunkRem = A.shape[1] - chunkSize * chunkInds

O = 0

return C
for ii in range(chunkSize):
startInds = ii*chunkInds
if ii == chunkSize-1:
endInds = (ii+1)*chunkInds + chunkRem
else:
endInds = (ii+1)*chunkInds

if (ii == 0)&(ii == chunkSize-1):
A1 = np.lib.pad(A[:,startInds:endInds],((int((kernelSize[0]-1)/2),int((kernelSize[0]-1)/2)),(int((kernelSize[1]-1)/2),int((kernelSize[1]-1)/2))),mode='constant',constant_values=np.nan)
else:
if ii == 0:
A1 = np.lib.pad(A[:,startInds:endInds+int((kernelSize[1]-1)/2)],((int((kernelSize[0]-1)/2),int((kernelSize[0]-1)/2)),(int((kernelSize[1]-1)/2),0)),mode='constant',constant_values=np.nan)
elif ii == chunkSize-1:
A1 = np.lib.pad(A[:,startInds-int((kernelSize[1]-1)/2):endInds],((int((kernelSize[0]-1)/2),int((kernelSize[0]-1)/2)),(0,int((kernelSize[1]-1)/2))),mode='constant',constant_values=np.nan)
else:
A1 = np.lib.pad(A[:,startInds-int((kernelSize[1]-1)/2):endInds+int((kernelSize[1]-1)/2)],((int((kernelSize[0]-1)/2),int((kernelSize[0]-1)/2)),(0,0)),mode='constant',constant_values=np.nan)

B = viewW(A1, kernelSize).reshape(-1,kernelSize[0]*kernelSize[1]).T[:,::1]

Adtype = A1.dtype
Ashape = A1.shape
del A1

output_size = (Ashape[0]-kernelSize[0]+1,Ashape[1]-kernelSize[1]+1)
C = np.zeros((B.shape[1],),dtype=Adtype)

if option == 0:# max
C = np.nanmax(B,axis=0)
del B
C = C.reshape(output_size)
elif option == 1:# min
C = np.nanmin(B,axis=0)
del B
C = C.reshape(output_size)
elif option == 2:# mean
C = np.nanmean(B,axis=0)
del B
C = C.reshape(output_size)
elif option == 3:# median
C = np.nanmedian(B,axis=0, overwrite_input=True)
del B
C = C.reshape(output_size)
elif option == 4:# range
C = np.nanmax(B,axis=0) - np.nanmin(B,axis=0)
del B
C = C.reshape(output_size)
elif option == 6:# MAD (Median Absolute Deviation)
m = B.shape[0]
D = np.zeros((B.shape[1],),dtype=Adtype)
D = np.nanmedian(B,axis=0)
D = np.abs(B - np.dot(np.ones((m,1),dtype=Adtype), np.array([D])))
del B
C = np.nanmedian(D,axis=0, overwrite_input=True)
del D
C = C.reshape(output_size)
elif option[0] == 5:# displacement distance count with option[1] being the threshold
m = B.shape[0]
c = int(np.round((m + 1) / 2)-1)
# c = 0
D = np.abs(B - np.dot(np.ones((m,1),dtype=Adtype), np.array([B[c,:]])))
del B
C = np.sum(D<option[1],axis=0)
del D
C = C.reshape(output_size)
else:
sys.exit('invalid option for columnwise neighborhood filtering')

C = C.astype(Adtype)

if np.isscalar(O):
O = C.copy()
else:
O = np.append(O,C,axis=1)

return O



Expand All @@ -1397,6 +1449,8 @@ def __init__(self):
self.FiltWidth = 5
self.Iter = 3
self.MadScalar = 4
self.colfiltChunkSize = 4


def filtDisp(self, Dx, Dy, SearchLimitX, SearchLimitY, M, OverSampleRatio):

Expand All @@ -1419,21 +1473,22 @@ def filtDisp(self, Dx, Dy, SearchLimitX, SearchLimitY, M, OverSampleRatio):
for i in range(self.Iter):
Dx[np.logical_not(M)] = np.nan
Dy[np.logical_not(M)] = np.nan
M = (colfilt(Dx.copy(), (self.FiltWidth, self.FiltWidth), (5,self.FracSearch)) >= dToleranceX) & (colfilt(Dy.copy(), (self.FiltWidth, self.FiltWidth), (5,self.FracSearch)) >= dToleranceY)
M = (colfilt(Dx.copy(), (self.FiltWidth, self.FiltWidth), (5,self.FracSearch), self.colfiltChunkSize) >= dToleranceX) & (colfilt(Dy.copy(), (self.FiltWidth, self.FiltWidth), (5,self.FracSearch), self.colfiltChunkSize) >= dToleranceY)

# if self.Iter == 3:
# pdb.set_trace()

for i in range(np.max([self.Iter-1,1])):
Dx[np.logical_not(M)] = np.nan
Dy[np.logical_not(M)] = np.nan

DxMad = colfilt(Dx.copy(), (self.FiltWidth, self.FiltWidth), 6)
DyMad = colfilt(Dy.copy(), (self.FiltWidth, self.FiltWidth), 6)

DxM = colfilt(Dx.copy(), (self.FiltWidth, self.FiltWidth), 3)
DyM = colfilt(Dy.copy(), (self.FiltWidth, self.FiltWidth), 3)
DxMad = colfilt(Dx.copy(), (self.FiltWidth, self.FiltWidth), 6, self.colfiltChunkSize)
DyMad = colfilt(Dy.copy(), (self.FiltWidth, self.FiltWidth), 6, self.colfiltChunkSize)

DxM = colfilt(Dx.copy(), (self.FiltWidth, self.FiltWidth), 3, self.colfiltChunkSize)
DyM = colfilt(Dy.copy(), (self.FiltWidth, self.FiltWidth), 3, self.colfiltChunkSize)


M = (np.abs(Dx - DxM) <= np.maximum(self.MadScalar * DxMad, DxMadmin)) & (np.abs(Dy - DyM) <= np.maximum(self.MadScalar * DyMad, DyMadmin)) & M

return M
Expand All @@ -1458,5 +1513,3 @@ def bwareaopen(image,size1):
return image




8 changes: 8 additions & 0 deletions geo_autoRIFT/autoRIFT/autoRIFT_ISCE.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,6 +165,13 @@
mandatory=False,
doc = 'Mad Scalar')

COLFILT_CHUNK_SIZE = Component.Parameter('colfiltChunkSize',
public_name = 'COLFILT_CHUNK_SIZE',
default = 4,
type = int,
mandatory=False,
doc = 'column filter chunk size')

BUFF_DISTANCE_C = Component.Parameter('BuffDistanceC',
public_name = 'BUFF_DISTANCE_C',
default = 8,
Expand Down Expand Up @@ -235,6 +242,7 @@ class autoRIFT_ISCE(autoRIFT, Component):
FILT_WIDTH,
ITER,
MAD_SCALAR,
COLFILT_CHUNK_SIZE,
BUFF_DISTANCE_C,
COARSE_COR_CUTOFF,
OVER_SAMPLE_RATIO,
Expand Down
Loading

0 comments on commit e940875

Please sign in to comment.