Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a notebook to view tables of json interactively #45

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions notebooks/QUICKSTART.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Run notebooks

## Create virtual environment

Make sure that uv is installed (though it should work with only pip)

```sh
uv venv
source .venv/bin/activate
```

## Install dependencies

From the `notebooks` directory:

```sh
uv pip install -r requirements-nb.txt
```

## Start jupyterlab

```sh
jupyter lab
```

## Tables example

Uses polars, great tables, and itables to display a json data file.
8 changes: 8 additions & 0 deletions notebooks/requirements-nb.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
-r ../requirements.txt

great_tables
itables
jupyter
pandas
polars

38 changes: 38 additions & 0 deletions notebooks/summary.html
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this just to show what the HTML from the notebook would look like in HTML? I'm not sure I grok how I should be using it. Also I'm not sure if we need to mention anywhere that you need to click Trust HTML if you're viewing this in jupyter lab

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We could remove the HTML. It was more for you. It could be embedded into a page in hublite.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Got it, let's remove for now and then we can merge this as an example. Next step would be to add a table showing the manifest information effectively. I think that would be very useful.

Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
<table id="itables_e557a59b_2a20_4ffc_b322_2972af0891af" class="display nowrap" data-quarto-disable-processing="true" style="table-layout:auto;width:auto;margin:auto;caption-side:bottom">
<thead>
<tr style="text-align: right;">

<th>name</th>
<th>version</th>
<th>display_name</th>
<th>summary</th>
<th>author</th>
<th>license</th>
<th>home_page</th>
</tr>
</thead><tbody><tr>
<td style="vertical-align:middle; text-align:left">

Loading ITables v2.2.5 from the internet...
(need <a href=https://mwouts.github.io/itables/troubleshooting.html>help</a>?)</td>
</tr></tbody>
</table>
<link href="https://www.unpkg.com/[email protected]/dt_bundle.css" rel="stylesheet">
<script type="module">
import {DataTable, jQuery as $} from 'https://www.unpkg.com/[email protected]/dt_bundle.js';

document.querySelectorAll("#itables_e557a59b_2a20_4ffc_b322_2972af0891af:not(.dataTable)").forEach(table => {
if (!(table instanceof HTMLTableElement))
return;

// Define the table data
const data = [["acquifer-napari", "0.0.2", "acquifer-napari", "Loader plugin for napari, to load Acquifer Imaging Machine datasets in napari, using dask for efficient lazy data-loading.", "Laurent Thomas", "GPL-3.0-only", null], ["ads_napari", "0.0.5", "ads_napari", "Axon/Myelin segmentation using AI", "NeuroPoly Lab", null, null], ["affinder", "0.4.0", "affinder", "Quickly find the affine matrix mapping one image to another using manual correspondence points annotation", "Juan Nunez-Iglesias", "BSD-3", "https://github.com/jni/affinder"]];

// Define the dt_args
let dt_args = {"layout": {"topStart": null, "topEnd": null, "bottomStart": null, "bottomEnd": null}, "order": [], "warn_on_selected_rows_not_rendered": true};
dt_args["data"] = data;


new DataTable(table, dt_args);
});
</script>
159 changes: 159 additions & 0 deletions notebooks/tables_playground.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "df688416-8513-47e1-b836-5f95a9b87be4",
"metadata": {},
"outputs": [],
"source": [
"# file path depends on what the current directory is and where you launched jupyter lab\n",
"# This filename assumes you started jupyterlab from the notebook directory\n",
"DATA_FILE = \"../public/summary.json\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b903d94-27f6-4d0a-93f0-e07e2501de4e",
"metadata": {},
"outputs": [],
"source": [
"# Let's use polars over pandas for performance\n",
"import polars as pl"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82c76b46-aaec-46e1-a3ca-b491cd3a9988",
"metadata": {},
"outputs": [],
"source": [
"# import great_tables for nicely styled tables\n",
"from great_tables import GT, md, html"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "34881b4e-0ca9-4577-b14a-8b8ad4305d38",
"metadata": {},
"outputs": [],
"source": [
"# import and initialize itables for interactive tables\n",
"from itables import init_notebook_mode, show\n",
"init_notebook_mode(all_interactive=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c01c8178-bc2d-4e7d-a9fb-217122121df9",
"metadata": {},
"outputs": [],
"source": [
"# Prevent itables from downsampling data\n",
"import itables.options as opt\n",
"opt.maxBytes = \"512KB\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b26c0b4c-8452-4f5b-9d51-855a43e422c4",
"metadata": {},
"outputs": [],
"source": [
"df_summary = pl.read_json(DATA_FILE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "27b9f28a-9627-4155-a5f3-ecc9fc130ba3",
"metadata": {},
"outputs": [],
"source": [
"print(\"Polars default output\")\n",
"df_summary.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35f7229a-49d0-481d-abf5-9b5866933395",
"metadata": {},
"outputs": [],
"source": [
"print(\"Great Tables default output\")\n",
"GT(df_summary.head())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "99b4939d-a0de-4932-bd72-09657d6caf9e",
"metadata": {},
"outputs": [],
"source": [
"print(\"Interactive table default\")\n",
"show(df_summary)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0060ed2c-34b2-4a11-b125-61cb517f50cf",
"metadata": {},
"outputs": [],
"source": [
"# Output as an html page (Quarto is also an option)\n",
"from IPython.display import HTML, display\n",
"\n",
"from itables import to_html_datatable\n",
"\n",
"html = to_html_datatable(df_summary.head(3), display_logo_when_loading=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "37cebbda-6896-46f3-bd0a-43e90232439c",
"metadata": {},
"outputs": [],
"source": [
"print(html)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3c5c10c9-58a9-4163-98a7-3376bd73cbae",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}