Skip to content

A shiny application to perform differential gene expression analysis of count data using DESeq2. The app also allows unsupervised exploration of data using PCA and hierarchical clustering.

License

Notifications You must be signed in to change notification settings

mubioinformatics/DESeq2-shiny

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

63 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Guide to Run DESeq2-shiny Container on a Cluster

Please follow the below steps to run the DESeq2-shiny container on a cluster:

  1. Remotely access any login node's terminal using the following command:

    ssh ${USER}@lewis.rnet.missouri.edu
    
    ssh ${USER}@lewis42.rnet.missouri.edu
    
    ssh ${USER}@lewis4-dtn.rnet.missouri.edu
    
    ssh ${USER}@lewis4-dtn1.rnet.missouri.edu
    
  2. Copy the DESeq2-shiny.job file to your home directory using the below command:

    cp /storage/hpc/group/ircf/software/singularity_DESeq2-shiny/DESeq2-shiny.job ~/DESeq2-shiny.job
    
  3. Navigate to your home directory using the following command:

    cd
    
  4. Check for an available node using the below command:

    sinfo --state=idle
    
  5. Modify the "DESeq2-shiny.job" file as per your requirements based on Partition, Node, Memory, MYDATA, etc.:

    #!/bin/bash
    ##SBATCH -p r630-hpc3
    ##SBATCH -w lewis4-r630-hpc3-node548
    #SBATCH -p Gpu
    #SBATCH -t 0-02:00  # time (days-hours:minutes)
    #SBATCH --ntasks-per-node=10
    #SBATCH --mem=100G
    #SBATCH --output=/home/%u/log_DESeq2-shiny.job.%j
    ##SBATCH [email protected]  # email address for notifications
    ##SBATCH --mail-type=END,FAIL  # which type of notifications to send
    #SBATCH -J DESeq2-shiny
    ##SBATCH --account ircf 
    
  6. Submit the job to the SLURM scheduler using the below command:

    sbatch DESeq2-shiny.job
    
  7. Check the job log for instructions by running the below command:

    cat log_DESeq2-shiny.job.*
    

About

A shiny application to perform differential gene expression analysis of count data using DESeq2. The app also allows unsupervised exploration of data using PCA and hierarchical clustering.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 97.9%
  • HTML 2.1%