Skip to content

mtuann/machine-unlearning-papers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 

Repository files navigation

Table of Contents

  1. Machine Unlearning Papers
  2. Other topics
  3. Machine Unlearning Papers with Code

Machine Unlearning Papers

This GitHub repository contains an updated list of Federated Learning papers as of October 29, 2024.

  • The resources are collected from various sources, including arXiv, NeurIPS, ICML, ICLR, ACL, EMNLP, AAAI, IJCAI, KDD, CVPR, ICCV, ECCV, NIPS, IEEE, ACM, Springer, ScienceDirect, Wiley, Nature, Science, and other top AI/ML conferences and journals.
  • For a better reading experience, visit the Shinyapps website.

Other Topics

Explore additional research papers on the following topics:


For contributions, inquiries, or suggestions, feel free to reach out via email.


If you find this application helpful and would like to support its development, you can buy me a coffee using one of the following methods:


Machine Unlearning Papers with Code

Due to GitHub repository limitations, this section includes only those papers that provide accompanying code, sorted by publish date. For access to the full list of papers, please visit the Shinyapps website.


No. Title Authors Publish Date Venue Code URL
1 Evaluating Deep Unlearning in Large Language Models Ruihan Wu, Chhavi Yadav, Russ Salakhutdinov, Kamalika Chaudhuri 2024-10-19 arXiv …, 2024 https://github.com/wrh14/deep_unlearning http://arxiv.org/abs/2410.15153v1
2 Meta-Unlearning on Diffusion Models: Preventing Relearning Unlearned Concepts Hongcheng Gao, Tianyu Pang, Chao Du, Taihang Hu, Zhijie Deng, Min Lin 2024-10-17 arXiv …, 2024 https://github.com/sail-sg/Meta-Unlearning http://arxiv.org/abs/2410.12777v1
3 Efficient Federated Unlearning under Plausible Deniability Ayush K. Varshney, Vicenç Torra 2024-10-13 arXiv:2410.09947, 2024 https://github.com/Ayush-Umu/Federated-Unlearning-under-Plausible-Deniability http://arxiv.org/abs/2410.09947v1
4 A Closer Look at Machine Unlearning for Large Language Models Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen, Weiming Zhang, Min Lin 2024-10-10 arXiv https://github.com/sail-sg/closer-look-LLM-unlearning http://arxiv.org/abs/2410.08109v1
5 Dissecting Fine-Tuning Unlearning in Large Language Models Yihuai Hong, Yuelin Zou, Lijie Hu, Ziqian Zeng, Di Wang, Haiqin Yang 2024-10-09 arXiv https://github.com/yihuaihong/Dissecting-FT-Unlearning http://arxiv.org/abs/2410.06606v1
6 Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, Sijia Liu 2024-10-09 arXiv https://github.com/OPTML-Group/Unlearn-Simple http://arxiv.org/abs/2410.07163v1
7 A Probabilistic Perspective on Unlearning and Alignment for Large Language Models Yan Scholten, Stephan Günnemann, Leo Schwinn 2024-10-04 arXiv:2410.03523, 2024 https://github.com/yascho/probabilistic-unlearning http://arxiv.org/abs/2410.03523v1
8 Unlearnable 3D Point Clouds: Class-wise Transformation Is All You Need Xianlong Wang, Minghui Li, Wei Liu, Hangtao Zhang, Shengshan Hu, Yechao Zhang, Ziqi Zhou, Hai Jin 2024-10-04 arXiv https://github.com/CGCL-codes/UnlearnablePC http://arxiv.org/abs/2410.03644v1
9 Multimodal Unlearnable Examples: Protecting Data against Multimodal Contrastive Learning Xinwei Liu, Xiaojun Jia, Yuan Xun, Siyuan Liang, Xiaochun Cao 2024-10 MM '24: Proceedings of the 32nd ACM International Conference on Multimedia https://github.com/thinwayliu/Multimodal-Unlearnable-Examples https://dl.acm.org/doi/10.1145/3664647.3680708
10 DuplexGuard: Safeguarding Deletion Right in Machine Unlearning Via Duplex Watermarking X. Zhang, C. Zhang, J. Lou, K. Wu, Z. Wang, X. Chen 2024-09-11 IEEE Transactions on Dependable and Secure Computing https://github.com/123000001212/DuplexGuard https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10670570
11 Unlearning or Concealment? A Critical Analysis and Evaluation Metrics for Unlearning in Diffusion Models Aakash Sen Sharma, Niladri Sarkar, Vikram S. Chundawat, Ankur A. Mali, Murari Mandal 2024-09-10 arXiv https://respailab.github.io/unlearning-or-concealment https://doi.org/10.48550/arXiv.2409.05668
12 CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence Chaochao Chen, Jiaming Zhang, Yizhao Zhang, Li Zhang, Lingjuan Lyu, Yuyuan Li, Biao Gong, Chenggang Yan 2024-08-27 arXiv https://github.com/xiye7lai/CURE4Rec https://doi.org/10.48550/arXiv.2408.14393
13 Scalable and Certifiable Graph Unlearning: Overcoming the Approximation Error Barrier Lu Yi, Zhewei Wei 2024-08-17 arXiv https://github.com/luyi256/ScaleGUN http://arxiv.org/abs/2408.09212v2
14 Machine Unlearning in Generative AI: A Survey Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, Meng Jiang 2024-07-31 arXiv https://github.com/franciscoliu/GenAI-MU-Reading https://doi.org/10.48550/arXiv.2407.20516
15 Revisiting Who's Harry Potter: Towards Targeted Unlearning from a Causal Intervention Perspective Yujian Liu, Yang Zhang, Tommi S. Jaakkola, Shiyu Chang 2024-07-25 arXiv https://github.com/UCSB-NLP-Chang/causal_unlearn https://doi.org/10.48550/arXiv.2407.16997
16 Safe Unlearning: A Surprisingly Effective and Generalizable Solution to Defend Against Jailbreak Attacks Zhexin Zhang, Junxiao Yang, Pei Ke, Shiyao Cui, Chujie Zheng, Hongning Wang, Minlie Huang 2024-07-04 arXiv https://github.com/thu-coai/SafeUnlearning https://doi.org/10.48550/arXiv.2407.02855
17 Enable the Right to be Forgotten with Federated Client Unlearning in Medical Imaging Zhipeng Deng, Luyang Luo, Hao Chen 2024-07-03 arXiv https://github.com/dzp2095/FCU https://doi.org/10.48550/arXiv.2407.02356
18 To Forget or Not? Towards Practical Knowledge Unlearning for Large Language Models Bozhong Tian, Xiaozhuan Liang, Siyuan Cheng, Qingbin Liu, Mengru Wang, Dianbo Sui, Xi Chen, Huajun Chen, Ningyu Zhang 2024-07-03 arXiv https://github.com/zjunlp/KnowUnDo https://doi.org/10.48550/arXiv.2407.01920
19 Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces Yihuai Hong, Lei Yu, Shauli Ravfogel, Haiqin Yang, Mor Geva 2024-06-18 arXiv https://github.com/yihuaihong/ConceptVectors https://doi.org/10.48550/arXiv.2406.11614
20 Soft Prompting for Unlearning in Large Language Models Karuna Bhaila, Minh-Hao Van, Xintao Wu 2024-06-17 arXiv https://github.com/karuna-bhaila/llm_unlearning https://doi.org/10.48550/arXiv.2406.12038
21 RWKU: Benchmarking Real-World Knowledge Unlearning for Large Language Models Zhuoran Jin, Pengfei Cao, Chenhao Wang, Zhitao He, Hongbang Yuan, Jiachun Li, Yubo Chen, Kang Liu, Jun Zhao 2024-06-16 arXiv http://rwku-bench.github.io https://doi.org/10.48550/arXiv.2406.10890
22 Data Attribution for Text-to-Image Models by Unlearning Synthesized Images Sheng-Yu Wang, Aaron Hertzmann, Alexei A. Efros, Jun-Yan Zhu, Richard Zhang 2024-06-14 arXiv https://peterwang512.github.io/AttributeByUnlearning https://doi.org/10.48550/arXiv.2406.09408
23 REVS: Unlearning Sensitive Information in Language Models via Rank Editing in the Vocabulary Space Tomer Ashuach, Martin Tutek, Yonatan Belinkov 2024-06-13 arXiv https://technion-cs-nlp.github.io/REVS https://doi.org/10.48550/arXiv.2406.09325
24 Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Rao Kompella, Sijia Liu, Shiyu Chang 2024-06-12 arXiv https://github.com/UCSB-NLP-Chang/ULD https://doi.org/10.48550/arXiv.2406.08607
25 Towards Efficient Machine Unlearning with Data Augmentation: Guided Loss-Increasing (GLI) to Prevent the Catastrophic Model Utility Drop Dasol Choi, Soora Choi, Eunsun Lee, Jinwoo Seo, Dongbin Na 2024-06-12 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) https://github.com/Dasol-Choi/Guided_Loss_Increasing https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10678506
26 Fast-FedUL: A Training-Free Federated Unlearning with Provable Skew Resilience Thanh Trung Huynh, Trong Bang Nguyen, Phi Le Nguyen, Thanh Tam Nguyen, Matthias Weidlich, Quoc Viet Hung Nguyen, Karl Aberer 2024-05-29 arXiv https://github.com/thanhtrunghuynh93/fastFedUL https://doi.org/10.48550/arXiv.2405.18040
27 A Study Regarding Machine Unlearning on Facial Attribute Data Emircan Gündogdu, Altay Unal, Gozde Unal 2024-05-27 2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG) https://github.com/ituvisionlab/face-attribute-unlearning https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10581972
28 Defensive Unlearning with Adversarial Training for Robust Concept Erasure in Diffusion Models Yimeng Zhang, Xin Chen, Jinghan Jia, Yihua Zhang, Chongyu Fan, Jiancheng Liu, Mingyi Hong, Ke Ding, Sijia Liu 2024-05-24 arXiv https://github.com/OPTML-Group/AdvUnlearn https://doi.org/10.48550/arXiv.2405.15234
29 Generative Unlearning for Any Identity Juwon Seo, Sung-Hoon Lee, Tae-Young Lee, Seungjun Moon, Gyeong-Moon Park 2024-05-17 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) https://github.com/KHU-AGI/GUIDE https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10655907
30 Erasing Concepts from Text-to-Image Diffusion Models with Few-shot Unlearning Masane Fuchi, Tomohiro Takagi 2024-05-12 arXiv https://github.com/fmp453/few-shot-erasing https://doi.org/10.48550/arXiv.2405.07288
31 Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders Yi Yu, Yufei Wang, Song Xia, Wenhan Yang, Shijian Lu, Yap-Peng Tan, Alex C. Kot 2024-05-02 arXiv https://github.com/yuyi-sd/D-VAE https://doi.org/10.48550/arXiv.2405.01460
32 Breaking the Trilemma of Privacy, Utility, and Efficiency via Controllable Machine Unlearning Zheyuan Liu, Guangyao Dou, Eli Chien, Chunhui Zhang, Yijun Tian, Ziwei Zhu 2024-05 WWW '24: Proceedings of the ACM on Web Conference 2024 https://github.com/guangyaodou/ConMU https://dl.acm.org/doi/10.1145/3589334.3645669
33 Machine Unlearning for Document Classification Lei Kang, Mohamed Ali Souibgui, Fei Yang, Lluís Gómez, Ernest Valveny, Dimosthenis Karatzas 2024-04-29 arXiv https://github.com/leitro/MachineUnlearning-DocClassification https://doi.org/10.48550/arXiv.2404.19031
34 SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer, Bhavya Kailkhura, Sijia Liu 2024-04-28 arXiv https://github.com/OPTML-Group/SOUL https://doi.org/10.48550/arXiv.2404.18239
35 Machine Unlearning via Null Space Calibration Huiqiang Chen, Tianqing Zhu, Xin Yu, Wanlei Zhou 2024-04-21 arXiv https://github.com/HQC-ML/Machine-Unlearning-via-Null-Space-Calibration https://doi.org/10.48550/arXiv.2404.13588
36 LMEraser: Large Model Unlearning through Adaptive Prompt Tuning Jie Xu, Zihan Wu, Cong Wang, Xiaohua Jia 2024-04-18 arXiv https://github.com/lmeraser/lmeraser https://doi.org/10.48550/arXiv.2404.11056
37 Eraser: Jailbreaking Defense in Large Language Models via Unlearning Harmful Knowledge Weikai Lu, Ziqian Zeng, Jianwei Wang, Zhengdong Lu, Zelin Chen, Huiping Zhuang, Cen Chen 2024-04-08 arXiv https://github.com/ZeroNLP/Eraser https://doi.org/10.48550/arXiv.2404.05880
38 Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning Chongyu Fan, Jiancheng Liu, Alfred O. Hero III, Sijia Liu 2024-03-13 arXiv https://github.com/OPTML-Group/Unlearn-WorstCase https://doi.org/10.48550/arXiv.2403.07362
39 Towards Efficient and Effective Unlearning of Large Language Models for Recommendation Hangyu Wang, Jianghao Lin, Bo Chen, Yang Yang, Ruiming Tang, Weinan Zhang, Yong Yu 2024-03-07 arXiv https://github.com/justarter/E2URec https://doi.org/10.48550/arXiv.2403.03536
40 Dissecting Language Models: Machine Unlearning via Selective Pruning Nicholas Pochinkov, Nandi Schoots 2024-03-02 arXiv https://github.com/nickypro/selective-pruning https://doi.org/10.48550/arXiv.2403.01267
41 Machine Unlearning of Pre-trained Large Language Models Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, Xiang Yue 2024-02-23 arXiv https://github.com/yaojin17/Unlearning_LLM https://doi.org/10.48550/arXiv.2402.15159
42 Corrective Machine Unlearning Shashwat Goel, Ameya Prabhu, Philip H. S. Torr, Ponnurangam Kumaraguru, Amartya Sanyal 2024-02-22 arXiv https://github.com/drimpossible/corrective-unlearning-bench https://doi.org/10.48550/arXiv.2402.14015
43 Machine Unlearning for Image-to-Image Generative Models Guihong Li, Hsiang Hsu, Chun-Fu Chen, Radu Marculescu 2024-02-01 arXiv https://github.com/jpmorganchase/l2l-generator-unlearning https://doi.org/10.48550/arXiv.2402.00351
44 Game-Theoretic Unlearnable Example Generator Shuang Liu, Yihan Wang, Xiao-Shan Gao 2024-01-31 AAAI https://github.com/hong-xian/gue https://doi.org/10.1609/aaai.v38i19.30130
45 Dataset Condensation Driven Machine Unlearning Junaid Iqbal Khan 2024-01-31 arXiv https://github.com/algebraicdianuj/DC_U https://doi.org/10.48550/arXiv.2402.00195
46 TOFU: A Task of Fictitious Unlearning for LLMs Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, J. Zico Kolter 2024-01-12 arXiv https://locuslab.github.io/tofu/ https://doi.org/10.48550/arXiv.2401.06121
47 A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models Rui Ma, Qiang Zhou, Yizhu Jin, Daquan Zhou, Bangjun Xiao, Xiuyu Li, Yi Qu, Aishani Singh, Kurt Keutzer, Jingtong Hu, Xiaodong Xie, Zhen Dong, Shanghang Zhang, Shiji Zhou 2024-01-04 arXiv https://rmpku.github.io/CPDM-page/ http://arxiv.org/abs/2403.12052v3
48 Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning Interference with Gradient Projection Tuan Hoang, Santu Rana, Sunil Gupta, Svetha Venkatesh 2024-01-01 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) https://github.com/hnanhtuan/projected_gradient_unlearning https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10483632
49 Machine Unlearning via Representation Forgetting With Parameter Self-Sharing Weiqi Wang, Chenhan Zhang, Zhiyi Tian, Shui Yu 2024 IEEE Transactions on Information Forensics and Security https://github.com/wwq5-code/RFU-SS https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10312776
50 To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yihua Zhang, Jiancheng Liu, Ke Ding, Sijia Liu 2024 arXiv https://github.com/OPTML-Group/Diffusion-MU-Attack https://doi.org/10.48550/arXiv.2310.11868
51 Stable Unlearnable Example: Enhancing the Robustness of Unlearnable Examples via Stable Error-Minimizing Noise Yixin Liu, Kaidi Xu, Xun Chen, Lichao Sun 2024 AAAI https://github.com/liuyixin-louis/Stable-Unlearnable-Example https://doi.org/10.1609/aaai.v38i4.28169
52 SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation Chongyu Fan, Jiancheng Liu, Yihua Zhang, Dennis Wei, Eric Wong, Sijia Liu 2024 arXiv https://github.com/OPTML-Group/Unlearn-Saliency https://doi.org/10.48550/arXiv.2310.12508
53 Task-Aware Machine Unlearning and Its Application in Load Forecasting Wangkun Xu, Fei Teng 2024 IEEE Transactions on Power Systems https://github.com/xuwkk/task_aware_machine_unlearning https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10472091
54 Fast Yet Effective Machine Unlearning Ayush K. Tarun, Vikram S. Chundawat, Murari Mandal, Mohan S. Kankanhalli 2024 IEEE Transactions on Neural Networks and Learning Systems https://github.com/vikram2000b/Fast-Machine-Unlearning https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10113700
55 Fair Machine Unlearning: Data Removal while Mitigating Disparities Alex Oesterling, Jiaqi Ma, Flávio P. Calmon, Himabindu Lakkaraju 2024 arXiv https://github.com/AI4LIFE-GROUP/fair-unlearning https://doi.org/10.48550/arXiv.2307.14754
56 Continual Forgetting for Pre-Trained Vision Models H. Zhao, B. Ni, J. Fan, Y. Wang, Y. Chen, G. Meng, Z. Zhang 2024 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) https://github.com/bjzhb666/GS-LoRA https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10655987
57 BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive Learning S. Liang, M. Zhu, A. Liu, B. Wu, X. Cao, E. -C. Chang 2024 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) https://github.com/LiangSiyuan21/BadCLIP https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10658003
58 FedCSA: Boosting the Convergence Speed of Federated Unlearning under Data Heterogeneity Zhen Wang, Daniyal M. Alghazzawi, Li Cheng, Gaoyang Liu, Chen Wang, Zeng Cheng, Yang Yang 2023-12-21 2023 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) https://github.com/ZhenWang9/FedCSA https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10491845
59 Deep Unlearning: Fast and Efficient Training-free Approach to Controlled Forgetting Sangamesh Kodge, Gobinda Saha, Kaushik Roy 2023-12-01 arXiv https://github.com/sangamesh-kodge/class_forgetting https://doi.org/10.48550/arXiv.2312.00761
60 Towards Machine Unlearning Benchmarks: Forgetting the Personal Identities in Facial Recognition Systems Dasol Choi, Dongbin Na 2023-11-03 arXiv https://github.com/ndb796/MachineUnlearning https://doi.org/10.48550/arXiv.2311.02240
61 A Survey of Federated Unlearning: A Taxonomy, Challenges and Future Directions Yang Zhao, Jiaxi Yang, Yiling Tao, Lixu Wang, Xiaoxiao Li, Dusit Niyato 2023-10-30 arXiv https://github.com/abbottyanginchina/Awesome-Federated-Unlearning https://doi.org/10.48550/arXiv.2310.19218
62 Unlearnable Examples Give a False Sense of Security: Piercing through Unexploitable Data with Learnable Examples Wan Jiang, Yunfeng Diao, He Wang, Jianxin Sun, Meng Wang, Richang Hong 2023-10 MM '23: Proceedings of the 31st ACM International Conference on Multimedia https://github.com/jiangw-0/LE_JCDP https://dl.acm.org/doi/10.1145/3581783.3611833
63 What Can We Learn from Unlearnable Datasets? Pedro Sandoval Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein 2023-05-30 NeurIPS https://github.com/psandovalsegura/learn-from-unlearnable http://papers.nips.cc/paper_files/paper/2023/hash/ee5bb72130c332c3d4bf8d231e617506-Abstract-Conference.html
64 Model Sparsification Can Simplify Machine Unlearning Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, Sijia Liu 2023-04-11 arXiv https://github.com/OPTML-Group/Unlearn-Sparse https://doi.org/10.48550/arXiv.2304.04934
65 GIF: A General Graph Unlearning Strategy via Influence Function Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, Xiangnan He 2023-04-06 WWW '23: Proceedings of the ACM Web Conference 2023 https://github.com/wujcan/GIF-torch/ https://dl.acm.org/doi/10.1145/3543507.3583521
66 Inductive Graph Unlearning Cheng-Long Wang, Mengdi Huai, Di Wang 2023-04-06 USENIX Security Symposium https://github.com/Happy2Git/GUIDE https://www.usenix.org/conference/usenixsecurity23/presentation/wang-cheng-long
67 Learning the Unlearnable: Adversarial Augmentations Suppress Unlearnable Example Attacks Tianrui Qin, Xitong Gao, Juanjuan Zhao, Kejiang Ye, Cheng-Zhong Xu 2023-03-27 arXiv https://github.com/lafeat/ueraser https://doi.org/10.48550/arXiv.2303.15127
68 Can Bad Teaching Induce Forgetting? Unlearning in Deep Networks Using an Incompetent Teacher Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, Mohan S. Kankanhalli 2023 AAAI https://github.com/vikram2000b/bad-teaching-unlearning https://doi.org/10.1609/aaai.v37i6.25879
69 ModelGiF: Gradient Fields for Model Functional Distance J. Song, Z. Xu, S. Wu, G. Chen, M. Song 2023 2023 IEEE/CVF International Conference on Computer Vision (ICCV) https://github.com/zju-vipa/modelgif https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10377295
70 Zero-Shot Machine Unlearning Vikram S Chundawat, Ayush K Tarun, Murari Mandal, Mohan Kankanhalli 2023 IEEE Transactions on Information Forensics and Security https://github.com/ayu987/zero-shot-unlearning https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10097553
71 Unlearnable Clusters: Towards Label-Agnostic Unlearnable Examples Jiaming Zhang, Xingjun Ma, Qi Yi, Jitao Sang, Yu-Gang Jiang, Yaowei Wang, Changsheng Xu 2023 CVPR https://github.com/jiamingzhang94/Unlearnable-Clusters https://doi.org/10.1109/CVPR52729.2023.00388
72 CleanCLIP: Mitigating Data Poisoning Attacks in Multimodal Contrastive Learning Hritik Bansal, Nishad Singhi, Yu Yang, Fan Yin, Aditya Grover, Kai-Wei Chang 2023 2023 IEEE/CVF International Conference on Computer Vision (ICCV) https://github.com/nishadsinghi/CleanCLIP https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10377853
73 Tangent Model Composition for Ensembling and Continual Fine-tuning T. Y. Liu, S. Soatto 2023 2023 IEEE/CVF International Conference on Computer Vision (ICCV) https://github.com/tianyu139/tangent-model-composition https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10378156
74 QoSEraser: A Data Erasable Framework for Web Service QoS Prediction Y. Zeng, Y. Li, Z. Xia, Z. Du, J. Wang, R. Lian, J. Xu 2023 2023 IEEE International Conference on Software Services Engineering (SSE) https://github.com/ZengYuXiang7/QoSEraser https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10234360
75 Toward Highly-Efficient and Accurate Services QoS Prediction via Machine Unlearning Yuxiang Zeng, Jianlong Xu, Yuhui Li, Caiyi Chen, Qingcao Dai, Zibo Du 2023 IEEE Access https://github.com/ZengYuXiang7/CADDEraser https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10171348
76 Machine Unlearning of Federated Clusters Chao Pan, Jin Sima, Saurav Prakash, Vishal Rana, Olgica Milenkovic 2023 ICLR https://github.com/thupchnsky/mufc https://openreview.net/pdf?id=VzwfoFyYDga
77 Knowledge Unlearning for Mitigating Privacy Risks in Language Models Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, Minjoon Seo 2023 ACL https://github.com/joeljang/knowledge-unlearning https://doi.org/10.18653/v1/2023.acl-long.805
78 Generalizability and Application of the Skin Reflectance Estimate Based on Dichromatic Separation (SREDS) J. Drahos, R. Plesh, K. Bahmani, M. Banavar, S. Schuckers 2023 2023 International Conference of the Biometrics Special Interest Group (BIOSIG) https://github.com/JosephDrahos/SREDS https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10345973
79 ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer Shen Lin, Xiaoyu Zhang, Chenyang Chen, Xiaofeng Chen, Willy Susilo 2023 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) https://github.com/RUIYUN-ML/ERM-KTP https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10203043
80 Deep Regression Unlearning Ayush Kumar Tarun, Vikram Singh Chundawat, Murari Mandal, Mohan S. Kankanhalli 2023 arXiv https://github.com/ayu987/deep-regression-unlearning https://doi.org/10.48550/arXiv.2210.08196
81 A Survey of Machine Unlearning Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin, Quoc Viet Hung Nguyen 2022-09-06 arXiv https://github.com/tamlhp/awesome-machine-unlearning https://doi.org/10.48550/arXiv.2209.02299
82 Deep Unlearning via Randomized Conditionally Independent Hessians Ronak Mehta, Sourav Pal, Vikas Singh, Sathya N. Ravi 2022-04-15 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) https://github.com/vsingh-group/LCODEC-deep-unlearning https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9880362
83 Robust Unlearnable Examples: Protecting Data Against Adversarial Learning Shaopeng Fu, Fengxiang He, Yang Liu, Li Shen, Dacheng Tao 2022-03-28 arXiv https://github.com/fshp971/robust-unlearnable-examples https://doi.org/10.48550/arXiv.2203.14533
84 Continual Learning and Private Unlearning Bo Liu, Qiang Liu, Peter Stone 2022-03-24 CoLLAs https://github.com/Cranial-XIX/Continual-Learning-Private-Unlearning https://proceedings.mlr.press/v199/liu22a.html
85 FedHarmony: Unlearning Scanner Bias with Distributed Data Nicola K. Dinsdale, Mark Jenkinson, Ana I. L. Namburete 2022-01-01 MICCAI https://github.com/nkdinsdale/FedHarmony https://doi.org/10.1007/978-3-031-16452-1_66
86 When Machine Unlearning Jeopardizes Privacy Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, Yang Zhang 2021-11 CCS '21: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security https://github.com/MinChen00/UnlearningLeaks https://dl.acm.org/doi/10.1145/3460120.3484756
87 Towards Probabilistic Verification of Machine Unlearning David Marco Sommer, Liwei Song, Sameer Wagh, Prateek Mittal 2020-03-09 arXiv https://github.com/inspire-group/unlearning-verification https://arxiv.org/abs/2003.04247
88 Robust Deep Learning-Based Diagnosis of Mixed Faults in Rotating Machinery S. Chen, Y. Meng, H. Tang, Y. Tian, N. He, C. Shao 2020 IEEE/ASME Transactions on Mechatronics https://github.com/siyuanc2/machine-fault-diag https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9136730
89 Compressed Sensing with Deep Image Prior and Learned Regularization Dave Van Veen, Ajil Jalal, Mahdi Soltanolkotabi, Eric Price, Sriram Vishwanath, Alexandros G. Dimakis nan OpenReview https://github.com/anon-iclr/csdip-iclr https://openreview.net/pdf/960068efdade58de64b1b641bcccfdba53ac168b.pdf
90 Effective Backdoor Defense by Exploiting Sensitivity of Poisoned Samples Weixin Chen, Baoyuan Wu, Haoqian Wang nan NeurIPS 2022 Accept https://github.com/SCLBD/Effective_backdoor_defense https://openreview.net/pdf/82397e777241ae042276e8493ca8e5d228821582.pdf
91 Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models Boxin Wang, Wei Ping, Chaowei Xiao, Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Bo Li, Anima Anandkumar, Bryan Catanzaro nan NeurIPS 2022 Accept https://github.com/NVIDIA/Megatron-LM/ https://openreview.net/pdf/cbffa1a0bf2612f146adbc70397e00fc131d2db4.pdf
92 Knowledge Removal in Sampling-based Bayesian Inference Shaopeng Fu, Fengxiang He, Dacheng Tao nan ICLR 2022 Poster https://github.com/fshp971/mcmc-unlearning https://openreview.net/pdf/a42ad90a502167268f1ba4c67f57150bf59ccbc9.pdf
93 Training wide residual networks for deployment using a single bit for each weight Mark D. McDonnell nan OpenReview https://github.com/McDonnell-Lab/1-bit-per-weight/ https://openreview.net/pdf/861cb006a62eb71925571a5d4979901d047a92ea.pdf
94 Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork Haotao Wang, Junyuan Hong, Aston Zhang, Jiayu Zhou, Zhangyang Wang nan NeurIPS 2022 Accept https://github.com/VITA-Group/Trap-and-Replace-Backdoor-Defense https://openreview.net/pdf/a0b040b733099d83fd30969cd35fa8cc35c367b2.pdf

Releases

No releases published

Packages

No packages published