This repository contains teaching material for an introductory machine learning course. You can find an interactive preview of the Pluto notebooks of this course here and you can run some notebooks on mybinder (some notebooks will crash on mybinder when they hit the memory limit).
To use the code, we recommend downloading Julia version 1.7.3 with juliaup
.
Windows
winget install julia -s msstore
juliaup add 1.7.3
juliaup default 1.7.3
Mac
curl -fsSL https://install.julialang.org | sh
You may need to run source ~/.bashrc
or source ~/.bash_profile
or source ~/.zshrc
if juliaup
is not found after installation.
Alternatively, if brew
is available on the system you can install juliaup with
brew install juliaup
juliaup add 1.7.3
juliaup default 1.7.3
Linux
curl -fsSL https://install.julialang.org | sh
You may need to run source ~/.bashrc
or source ~/.bash_profile
or source ~/.zshrc
if juliaup
is not found after installation.
Alternatively, use the AUR if you are on Arch Linux or zypper
if you are on openSUSE Tumbleweed.
juliaup add 1.7.3
juliaup default 1.7.3
Once you have finished the above steps 1.-3. for your operating system, launch julia and run the following code to install the course material.
julia> using Pkg
Pkg.activate(temp = true)
Pkg.develop(url = "https://github.com/jbrea/MLCourse")
Pkg.activate(joinpath(Pkg.devdir(), "MLCourse"))
Pkg.instantiate()
using MLCourse
MLCourse.start()
Many packages and binaries are downloaded in the Pkg.instantiate()
step.
If you encounter an error message like ERROR: Unable to automatically install 'sysimage'
or ERROR: failed to clone from ...
rerun Pkg.instantiate()
a moment later.
Once MLCourse is installed, you can open the notebooks in a Julia REPL anytime with
julia> using Pkg; Pkg.activate(joinpath(Pkg.devdir(), "MLCourse"))
using MLCourse
MLCourse.start()
You can update the course material with
julia> using Pkg; Pkg.activate(joinpath(Pkg.devdir(), "MLCourse"))
using MLCourse
MLCourse.update()