Skip to content

modelscope/modelscope-mcp-server

Repository files navigation

ModelScope MCP Server

PyPI Version PyPI Downloads Docker GitHub Container Registry License

English | δΈ­ζ–‡

Empowers AI agents and chatbots with direct access to ModelScope's rich ecosystem of AI resources. From generating images to discovering cutting-edge models, datasets, apps and research papers, this MCP server makes ModelScope's vast collection of tools and services accessible through simple conversational interactions.

✨ Features

  • 🎨 AI Image Generation - Generate images from prompts (text-to-image) or transform existing images (image-to-image) using AIGC models
  • πŸ” Resource Discovery - Search and discover ModelScope resources including models, datasets, studios (AI apps), research papers, and MCP servers with advanced filtering options
  • πŸ“‹ Resource Details - Get comprehensive details for specific resources
  • πŸ“– Documentation Search (Coming Soon) - Semantic search for ModelScope documentation and articles
  • πŸš€ Gradio API Integration (Coming Soon) - Invoke Gradio APIs exposed by any pre-configured ModelScope studios
  • πŸ” Context Information - Access current operational context including authenticated user information and environment details

πŸš€ Quick Start

1. Get Your API Token

  1. Visit ModelScope and sign in to your account
  2. Navigate to [Home] β†’ [Access Tokens] to retrieve or create your API token

πŸ“– For detailed instructions, refer to the ModelScope Token Documentation

2. Integration with MCP Clients

Add the following JSON configuration to your MCP client's configuration file:

{
  "mcpServers": {
    "modelscope-mcp-server": {
      "command": "uvx",
      "args": ["modelscope-mcp-server"],
      "env": {
        "MODELSCOPE_API_TOKEN": "your-api-token"
      }
    }
  }
}

Or, you can use the pre-built Docker image:

{
  "mcpServers": {
    "modelscope-mcp-server": {
      "command": "docker",
      "args": [
        "run", "--rm", "-i",
        "-e", "MODELSCOPE_API_TOKEN",
        "ghcr.io/modelscope/modelscope-mcp-server"
      ],
      "env": {
        "MODELSCOPE_API_TOKEN": "your-api-token"
      }
    }
  }
}

Refer to the MCP JSON Configuration Standard for more details.

This format is widely adopted across the MCP ecosystem:

  • Cherry Studio: See Cherry Studio MCP Configuration
  • Claude Desktop: Uses ~/.claude/claude_desktop_config.json
  • Cursor: Uses ~/.cursor/mcp.json
  • VS Code: Uses workspace .vscode/mcp.json
  • Other clients: Many MCP-compatible applications follow this standard

πŸ› οΈ Development

Environment Setup

  1. Clone and Setup:

    git clone https://github.com/modelscope/modelscope-mcp-server.git
    cd modelscope-mcp-server
    uv sync
  2. Activate Environment (or use your IDE):

    source .venv/bin/activate  # Linux/macOS
  3. Set Your API Token (see Quick Start section for token setup):

    export MODELSCOPE_API_TOKEN="your-api-token"
    # Or create .env file: echo 'MODELSCOPE_API_TOKEN="your-api-token"' > .env

Running the Demo Script

Run a quick demo to explore the server's capabilities:

uv run python demo.py

Use the --full flag for comprehensive feature demonstration:

uv run python demo.py --full

Running the Server Locally

# Standard stdio transport (default)
uv run modelscope-mcp-server

# Streamable HTTP transport for web integration
uv run modelscope-mcp-server --transport http

# HTTP/SSE transport with custom port (default: 8000)
uv run modelscope-mcp-server --transport [http/sse] --port 8080

For HTTP/SSE mode, connect using a local URL in your MCP client configuration:

{
  "mcpServers": {
    "modelscope-mcp-server": {
      "url": "http://127.0.0.1:8000/mcp/"
    }
  }
}

You can also debug the server using the MCP Inspector tool:

# Run in UI mode with stdio transport (can switch to HTTP/SSE in the Web UI as needed)
npx @modelcontextprotocol/inspector uv run modelscope-mcp-server

# Run in CLI mode with HTTP transport (can do operations across tools, resources, and prompts)
npx @modelcontextprotocol/inspector --cli http://127.0.0.1:8000/mcp/ --transport http --method tools/list

Testing

# Run all tests
uv run pytest

# Run specific test file
uv run pytest tests/test_search_papers.py

# With coverage report
uv run pytest --cov=src --cov-report=html

πŸ”„ Continuous Integration

This project uses GitHub Actions for automated CI/CD workflows that run on every push and pull request:

Automated Checks

  • ✨ Lint - Code formatting, linting, and style checks using pre-commit hooks
  • πŸ§ͺ Test - Comprehensive testing across all supported Python versions
  • πŸ” CodeQL - Security vulnerability scanning and code quality analysis
  • πŸ”’ Gitleaks - Detecting secrets like passwords, API keys, and tokens

Local Development Checks

Run the same checks locally before submitting PRs:

# Install and run pre-commit hooks
uv run pre-commit install
uv run pre-commit run --all-files

# Run tests
uv run pytest

Monitor CI status in the Actions tab.

πŸ“¦ Release Management

This project uses GitHub Actions for automated release management. To create a new release:

  1. Update version using the bump script:

    uv run python scripts/bump_version.py [patch|minor|major]
    # Or set specific version: uv run python scripts/bump_version.py set 1.2.3.dev1
  2. Commit and tag (follow the script's output instructions):

    git add src/modelscope_mcp_server/_version.py
    git commit -m "chore: bump version to v{version}"
    git tag v{version} && git push origin v{version}
  3. Automated publishing - GitHub Actions will automatically:

🀝 Contributing

We welcome contributions! Please ensure your PRs:

  • Include relevant tests and pass all CI checks
  • Update documentation for new features
  • Follow conventional commit format

πŸ“š References

πŸ“œ License

This project is licensed under the Apache License (Version 2.0).

Packages

 
 
 

Contributors 3

  •  
  •  
  •