-
Notifications
You must be signed in to change notification settings - Fork 201
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add image_pair_similarity_filter (#393)
* upload_image_pair_similarity_filter * Update test_image_pair_similarity_filter.py * update * Update image_pair_similarity_filter.py * Update image_pair_similarity_filter.py * Update Operators.md
- Loading branch information
1 parent
adb4ac9
commit b3559af
Showing
7 changed files
with
195 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
import numpy as np | ||
from jsonargparse.typing import ClosedUnitInterval | ||
|
||
from data_juicer.ops.base_op import OPERATORS, Filter | ||
from data_juicer.ops.op_fusion import LOADED_IMAGES | ||
from data_juicer.utils.availability_utils import AvailabilityChecking | ||
from data_juicer.utils.constant import Fields, StatsKeys | ||
from data_juicer.utils.mm_utils import load_data_with_context, load_image | ||
from data_juicer.utils.model_utils import get_model, prepare_model | ||
|
||
OP_NAME = 'image_pair_similarity_filter' | ||
|
||
with AvailabilityChecking(['torch', 'transformers'], OP_NAME): | ||
|
||
import torch | ||
import transformers # noqa: F401 | ||
|
||
# avoid hanging when calling clip in multiprocessing | ||
torch.set_num_threads(1) | ||
|
||
|
||
@OPERATORS.register_module(OP_NAME) | ||
@LOADED_IMAGES.register_module(OP_NAME) | ||
class ImagePairSimilarityFilter(Filter): | ||
"""Filter to keep image pairs with similarities between images | ||
within a specific range.""" | ||
|
||
_accelerator = 'cuda' | ||
|
||
def __init__(self, | ||
hf_clip='openai/clip-vit-base-patch32', | ||
trust_remote_code=False, | ||
min_score: ClosedUnitInterval = 0.1, | ||
max_score: ClosedUnitInterval = 1.0, | ||
any_or_all: str = 'any', | ||
*args, | ||
**kwargs): | ||
""" | ||
Initialization method. | ||
:param hf_clip: clip model name on huggingface to compute | ||
the similarity between image and text. | ||
:param min_score: The min similarity to keep samples. | ||
:param max_score: The max similarity to keep samples. | ||
:param any_or_all: keep this sample with 'any' or 'all' strategy of | ||
all images. 'any': keep this sample if any images meet the | ||
condition. 'all': keep this sample only if all images meet the | ||
condition. | ||
:param args: extra args | ||
:param kwargs: extra args | ||
""" | ||
super().__init__(*args, **kwargs) | ||
self.min_score = min_score | ||
self.max_score = max_score | ||
if any_or_all not in ['any', 'all']: | ||
raise ValueError(f'Keep strategy [{any_or_all}] is not supported. ' | ||
f'Can only be one of ["any", "all"].') | ||
self.any = (any_or_all == 'any') | ||
self.model_key = prepare_model(model_type='huggingface', | ||
pretrained_model_name_or_path=hf_clip, | ||
trust_remote_code=trust_remote_code) | ||
|
||
def compute_stats(self, sample, rank=None, context=False): | ||
|
||
# check if it's computed already | ||
if StatsKeys.image_pair_similarity in sample[Fields.stats]: | ||
return sample | ||
|
||
# there is no image in this sample | ||
if (self.image_key not in sample | ||
or not len(sample[self.image_key]) == 2 | ||
or sample[self.image_key][0] == sample[self.image_key][1]): | ||
raise ValueError('Each sample must include two images.') | ||
|
||
# load images | ||
loaded_image_keys = sample[self.image_key] | ||
sample, images = load_data_with_context(sample, context, | ||
loaded_image_keys, load_image) | ||
|
||
similarity = [] | ||
model, processor = get_model(self.model_key, rank, self.use_cuda()) | ||
|
||
image_list = [] | ||
for temp_key in images.keys(): | ||
image_list.append(images[temp_key]) | ||
image_tensors = processor.image_processor( | ||
image_list, return_tensors='pt')['pixel_values'] | ||
image1_batch_feature = model.get_image_features( | ||
image_tensors[0].unsqueeze(0).to(model.device)) | ||
image2_batch_feature = model.get_image_features( | ||
image_tensors[1].unsqueeze(0).to(model.device)) | ||
|
||
similarity = torch.cosine_similarity(image1_batch_feature, | ||
image2_batch_feature, | ||
dim=1) | ||
sample[Fields.stats][StatsKeys.image_pair_similarity] = similarity | ||
|
||
return sample | ||
|
||
def process(self, sample, rank=None): | ||
similarity = sample[Fields.stats][StatsKeys.image_pair_similarity] | ||
if len(similarity) <= 0: | ||
return True | ||
|
||
keep_bools = np.array([ | ||
self.min_score <= sim_value <= self.max_score | ||
for sim_value in similarity | ||
]) | ||
|
||
# different strategies | ||
if self.any: | ||
return keep_bools.any() | ||
else: | ||
return keep_bools.all() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import os | ||
import unittest | ||
|
||
from data_juicer.core.data import NestedDataset as Dataset | ||
|
||
from data_juicer.ops.filter.image_pair_similarity_filter import ImagePairSimilarityFilter | ||
from data_juicer.utils.constant import Fields | ||
from data_juicer.utils.mm_utils import SpecialTokens | ||
from data_juicer.utils.unittest_utils import DataJuicerTestCaseBase | ||
|
||
|
||
class ImagePairSimilarityFilterTest(DataJuicerTestCaseBase): | ||
|
||
data_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', | ||
'data') | ||
cat_path = os.path.join(data_path, 'cat.jpg') | ||
img2_path = os.path.join(data_path, 'img2.jpg') | ||
img3_path = os.path.join(data_path, 'img3.jpg') | ||
img5_path = os.path.join(data_path, 'img5.jpg') | ||
img7_path = os.path.join(data_path, 'img7.jpg') | ||
hf_clip = 'openai/clip-vit-base-patch32' | ||
|
||
@classmethod | ||
def tearDownClass(cls) -> None: | ||
super().tearDownClass(cls.hf_clip) | ||
|
||
def _run_filter(self, dataset: Dataset, op, num_proc=1): | ||
|
||
if Fields.stats not in dataset.features: | ||
# TODO: | ||
# this is a temp solution, | ||
# only add stats when calling filter op | ||
dataset = dataset.add_column(name=Fields.stats, | ||
column=[{}] * dataset.num_rows) | ||
|
||
dataset = dataset.map(op.compute_stats, | ||
num_proc=num_proc, | ||
with_rank=True) | ||
dataset = dataset.filter(op.process, num_proc=num_proc) | ||
dataset = dataset.select_columns(column_names=['text', 'images']) | ||
res_list = dataset.to_list() | ||
print(res_list) | ||
|
||
def test_no_eoc_special_token(self): | ||
|
||
ds_list = [{ | ||
'text': 'image pair 1', | ||
'images': [self.cat_path, self.img3_path] | ||
}, { | ||
'text': 'image pair 2', | ||
'images': [self.img3_path, self.img7_path] | ||
}, { | ||
'text': 'image pair 3', | ||
'images': [self.img2_path, self.img5_path] | ||
}] | ||
|
||
|
||
dataset = Dataset.from_list(ds_list) | ||
op = ImagePairSimilarityFilter(hf_clip=self.hf_clip, | ||
any_or_all='any', | ||
min_score=0.85, | ||
max_score=1) | ||
self._run_filter(dataset, op) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |