Skip to content
/ RPO Public

Official Implementation of "Read-only Prompt Optimization for Vision-Language Few-shot Learning", ICCV 2023

License

Notifications You must be signed in to change notification settings

mlvlab/RPO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

USERUSER
USER
and
USER
Aug 19, 2023
d770db6 · Aug 19, 2023

History

46 Commits
Jun 1, 2023
Aug 15, 2023
Jun 1, 2023
Aug 17, 2023
Aug 17, 2023
Aug 17, 2023
Aug 15, 2023
Aug 17, 2023
Aug 17, 2023
Nov 21, 2022
Aug 16, 2023
Aug 19, 2023
Nov 21, 2022
Nov 21, 2022
Aug 9, 2023

Repository files navigation

Read-only-Prompt-Optimization for Vision-Language Few-shot Learning

This is the official implementation of the ICCV 2023 paper, "Read-only Prompt Optimization for Vision-Language Few-shot Learning" by D. Lee, S. Song, J. Suh, J. Choi, S. Lee and H. J. Kim.

1. Setup & Installations

  1. install Dassl library following instruction from this link (For reproduction, cuda version 11.7 is recommended.)
  2. Follow DATASET.md to download datasets under data/ directory.

2. How to Run Experiments?

2.1. Data path setup

For every base2new_train.sh, base2new_test.sh, xd_train.sh, and xd_test.sh file in scripts/*/ directory, uncomment DATA= and insert the current data directory (e.g., DATA=data/) in the field.

2.2. Using Checkpoint

If you want to check reproducibility of Table1 and Table2, without multiple times of time-consuming training, you may download rpo.zip file from this link, unzip the file and place it under the output/ directory.

2.3. Run Experiments

Table 1. Base to new generalization

# Linear Probe
sh scripts/lp/base2new_generalization_main.sh [gpu_id]

# CoOp
sh scripts/coop/base2new_generalization_main.sh [gpu_id]

# CoCoOp
sh scripts/cocoop/base2new_generalization_main.sh [gpu_id]

# RPO
sh scripts/rpo/base2new_generalization_main.sh [gpu_id]

Table 2. Domain generalization

# CoOp
sh scripts/coop/domain_generalization_main.sh [gpu_id]

# CoCoOp
sh scripts/cocoop/domain_generalization_main.sh [gpu_id]

# RPO
sh scripts/rpo/domain_generalization_main.sh [gpu_id]

Analyes & Figures

Figure 1.

# CoOp
sh scripts/coop/motivation.sh [gpu_id]

# CoCoOp
sh scripts/cocoop/motivation.sh [gpu_id]

# Linear Probe
sh scripts/lp/motivation.sh [gpu_id]

Table 4 & Figure 5

# RPO
sh scripts/rpo/efs_base2new_generalization_main.sh [gpu_id]

# CoCoOp
sh scripts/cocoop/efs_base2new_generalization_main.sh [gpu_id]

Citation

@inproceedings{lee2023rpo,
  title={Read-only Prompt Optimization for Vision-Language Few-shot Learning},
  author={Lee, Dongjun and Song, Seokwon and Suh, Jihee and Choi, Joonmyeong and Lee, Sanghyeok and Kim, Hyunwoo J.},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2023}
}

License

Licensed under MIT License

  • Copyright (c) 2022 MLV Lab (Machine Learning and Vision Lab at Korea University)

About

Official Implementation of "Read-only Prompt Optimization for Vision-Language Few-shot Learning", ICCV 2023

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published