-
Notifications
You must be signed in to change notification settings - Fork 91
GANs mnist #172
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
swaingotnochill
wants to merge
22
commits into
mlpack:master
Choose a base branch
from
swaingotnochill:gans
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
GANs mnist #172
Changes from all commits
Commits
Show all changes
22 commits
Select commit
Hold shift + click to select a range
8ff8b75
added pycache to gitignore
swaingotnochill f0ea62c
Merge branch 'master' of https://github.com/mlpack/examples
swaingotnochill a1bf251
Training Script for GAN
swaingotnochill 3a68c83
tested training script
swaingotnochill acb2048
gan image generate and sampling
swaingotnochill 90214b6
gan genenrate csv files
swaingotnochill 3f9bafe
gans generating images
swaingotnochill 2ebecff
commented generator architecture
swaingotnochill 7ded9fc
modified mnist_gan_generate file
swaingotnochill e55e29e
add generate image cpython script
swaingotnochill 0a6a590
cleaned mnist gan file
swaingotnochill abfcd33
cleaned mnist generate file
swaingotnochill e155073
modified generateimage python script
swaingotnochill bc3afc2
changed makefile for Push
swaingotnochill e3f9003
finalized generate image for Push
swaingotnochill 8ba21fd
add samples posterior folder
swaingotnochill a9d5011
modified mnist gan notebook
swaingotnochill 2a45d92
add mnist_gan for push
swaingotnochill 2ea30b2
push
swaingotnochill 4cac2a4
add all files
swaingotnochill 25abdc9
push
swaingotnochill 3281b0a
add new line at the end of file
swaingotnochill File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
TARGET := mnist_gan_generate | ||
SRC := mnist_gan_generate.cpp | ||
LIBS_NAME := armadillo mlpack | ||
|
||
CXX := g++ | ||
CXXFLAGS += -std=c++11 -Wall -Wextra -O3 -DNDEBUG | ||
# Use these CXXFLAGS instead if you want to compile with debugging symbols and | ||
# without optimizations. | ||
# CXXFLAGS += -std=c++11 -Wall -Wextra -g -O0 | ||
LDFLAGS += -fopenmp | ||
LDFLAGS += -lboost_serialization | ||
LDFLAGS += -larmadillo | ||
LDFLAGS += -L. # /path to mlpack library if installed locally. | ||
# path: mlpack/build/lib. | ||
# Add header directories for any includes that aren't on the | ||
# default compiler search path. | ||
INCLFLAGS := -I. | ||
CXXFLAGS += $(INCLFLAGS) | ||
|
||
OBJS := $(SRC:.cpp=.o) | ||
LIBS := $(addprefix -l,$(LIBS_NAME)) | ||
CLEAN_LIST := $(TARGET) $(OBJS) | ||
|
||
# default rule | ||
default: all | ||
|
||
$(TARGET): $(OBJS) | ||
$(CXX) $(CXXFLAGS) $(OBJS) -o $(TARGET) $(LDFLAGS) $(LIBS) | ||
|
||
.PHONY: all | ||
all: $(TARGET) | ||
|
||
.PHONY: clean | ||
clean: | ||
@echo CLEAN $(CLEAN_LIST) | ||
@rm -f $(CLEAN_LIST) |
Binary file not shown.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
#include <mlpack/core.hpp> | ||
#include <mlpack/core/data/split_data.hpp> | ||
|
||
#include <mlpack/methods/ann/init_rules/gaussian_init.hpp> | ||
#include <mlpack/methods/ann/loss_functions/sigmoid_cross_entropy_error.hpp> | ||
#include <mlpack/methods/ann/gan/gan.hpp> | ||
#include <mlpack/methods/ann/layer/layer.hpp> | ||
#include <mlpack/methods/softmax_regression/softmax_regression.hpp> | ||
|
||
#include <ensmallen.hpp> | ||
|
||
using namespace mlpack; | ||
using namespace mlpack::data; | ||
using namespace mlpack::ann; | ||
using namespace mlpack::math; | ||
using namespace mlpack::regression; | ||
using namespace std::placeholders; | ||
|
||
|
||
int main() | ||
{ | ||
size_t dNumKernels = 32; | ||
size_t discriminatorPreTrain = 5; | ||
size_t batchSize = 5; | ||
size_t noiseDim = 100; | ||
size_t generatorUpdateStep = 1; | ||
size_t numSamples = 10; | ||
size_t cycles = 10; | ||
size_t numEpoches = 25; | ||
double stepSize = 0.0003; | ||
double trainRatio = 0.8; | ||
double eps = 1e-8; | ||
double tolerance = 1e-5; | ||
bool shuffle = true; | ||
double multiplier = 10; | ||
int datasetMaxCols = 10; | ||
|
||
std::cout << std::boolalpha | ||
<< " batchSize = " << batchSize << std::endl | ||
<< " generatorUpdateStep = " << generatorUpdateStep << std::endl | ||
<< " noiseDim = " << noiseDim << std::endl | ||
<< " numSamples = " << numSamples << std::endl | ||
<< " stepSize = " << stepSize << std::endl | ||
<< " numEpochs = " << numEpoches << std::endl | ||
<< " shuffle = " << shuffle << std::endl; | ||
|
||
arma::mat mnistDataset; | ||
mnistDataset.load("./dataset/mnist_first250_training_4s_and_9s.arm"); | ||
|
||
std::cout << "Dataset Shape: " << (mnistDataset.n_rows, mnistDataset.n_cols) << std::endl; | ||
std::cout << arma::size(mnistDataset) << std::endl; | ||
|
||
mnistDataset = mnistDataset.cols(0, datasetMaxCols-1); | ||
size_t numIterations = mnistDataset.n_cols * numEpoches; | ||
numIterations /= batchSize; | ||
|
||
std::cout << "MnistDataset No. of rows: " << mnistDataset.n_rows << std::endl; | ||
|
||
/** | ||
* @brief Model Architecture: | ||
* | ||
* Discriminator: | ||
* 28x28x1-----------> conv (32 filters of size 5x5, | ||
* stride = 1, padding = 2)----------> 28x28x32 | ||
* 28x28x32----------> ReLU -----------------------------> 28x28x32 | ||
* 28x28x32----------> Mean pooling ---------------------> 14x14x32 | ||
* 14x14x32----------> conv (64 filters of size 5x5, | ||
* stride = 1, padding = 2)------> 14x14x64 | ||
* 14x14x64----------> ReLU -----------------------------> 14x14x64 | ||
* 14x14x64----------> Mean pooling ---------------------> 7x7x64 | ||
* 7x7x64------------> Linear Layer ---------------------> 1024 | ||
* 1024--------------> ReLU -----------------------------> 1024 | ||
* 1024 -------------> Linear ---------------------------> 1 | ||
* | ||
* | ||
* Generator: | ||
* noiseDim---------> Linear ---------------------------> 3136 | ||
* 3136 ------------> BatchNormalizaton ----------------> 3136 | ||
* 3136 ------------> ReLu Layer -----------------------> 3136 | ||
* 56x56x1 ---------> conv(1 filter of size 3x3, | ||
* stride = 2, padding = 1)----> 28x28x(noiseDim/2) | ||
* 28x28x(noiseDim/2)----> BatchNormalizaton -----------> 28x28x(noiseDim/2) | ||
* 28x28x(noiseDim/2)----> ReLu Layer-------------------> 28x28x(noiseDim/2) | ||
* 28x28x(noiseDim/2) ----> BilinearInterpolation ------> 56x56x(noiseDim/2) | ||
* 56x56x(noiseDim/2) -----> conv((noiseDim/2) filters | ||
* of size 3x3,stride = 2, | ||
* padding = 1)----------> 28x28x(noiseDim/4) | ||
* 28x28x(noiseDim/4) ----->BatchNormalization----------> 28x28x(noiseDim/4) | ||
* 28x28x(noiseDim/4) ------> ReLu Layer ---------------> 28x28x(noiseDim/4) | ||
* 28x28x(noiseDim/4) ------> BilinearInterpolation ----> 56x56x(noiseDim/4) | ||
* 56x56x(noiseDim/4) ------> conv((noiseDim/4) filters | ||
* of size 3x3, stride = 2, | ||
* padding = 1)-------> 28x28x1 | ||
* 28x28x1 ----------> tanh layer ----------------------> 28x28x1 | ||
* | ||
* | ||
* Note: Output of a Convolution layer = [(W-K+2P)/S + 1] | ||
* where, W : Size of input volume | ||
* K : Kernel size | ||
* P : Padding | ||
* S : Stride | ||
*/ | ||
|
||
// Creating the Discriminator network. | ||
FFN<SigmoidCrossEntropyError<> > discriminator; | ||
discriminator.Add<Convolution<> >(1, // Number of input activation maps | ||
dNumKernels, // Number of output activation maps | ||
5, // Filter width | ||
5, // Filter height | ||
1, // Stride along width | ||
1, // Stride along height | ||
2, // Padding width | ||
2, // Padding height | ||
28, // Input widht | ||
28); // Input height | ||
// Adding first ReLU. | ||
discriminator.Add<ReLULayer<> >(); | ||
// Adding mean pooling layer. | ||
discriminator.Add<MeanPooling<> >(2, 2, 2, 2); | ||
// Adding second convolution layer. | ||
discriminator.Add<Convolution<> >(dNumKernels, 2 * dNumKernels, 5, 5, 1, 1, | ||
2, 2, 14, 14); | ||
// Adding second ReLU. | ||
discriminator.Add<ReLULayer<> >(); | ||
// Adding second mean pooling layer. | ||
discriminator.Add<MeanPooling<> >(2, 2, 2, 2); | ||
// Adding linear layer. | ||
discriminator.Add<Linear<> >(7 * 7 * 2 * dNumKernels, 1024); | ||
// Adding third ReLU. | ||
discriminator.Add<ReLULayer<> >(); | ||
// Adding final layer. | ||
discriminator.Add<Linear<> >(1024, 1); | ||
|
||
// Creating the Generator network. | ||
FFN<SigmoidCrossEntropyError<> > generator; | ||
generator.Add<Linear<> >(noiseDim, 3136); | ||
generator.Add<BatchNorm<> >(3136); | ||
generator.Add<ReLULayer<> >(); | ||
generator.Add<Convolution<> >(1, // Number of input activation maps. | ||
noiseDim / 2, // Number of output activation maps. | ||
3, // Filter width. | ||
3, // Filter height. | ||
2, // Stride along width. | ||
2, // Stride along height. | ||
1, // Padding width. | ||
1, // Padding height. | ||
56, // input width. | ||
56); // input height. | ||
// Adding first batch normalization layer. | ||
generator.Add<BatchNorm<> >(39200); | ||
// Adding first ReLU. | ||
generator.Add<ReLULayer<> >(); | ||
// Adding a bilinear interpolation layer. | ||
generator.Add<BilinearInterpolation<> >(28, 28, 56, 56, noiseDim / 2); | ||
// Adding second convolution layer. | ||
generator.Add<Convolution<> >(noiseDim / 2, noiseDim / 4, 3, 3, 2, 2, 1, 1, | ||
56, 56); | ||
// Adding second batch normalization layer. | ||
generator.Add<BatchNorm<> >(19600); | ||
// Adding second ReLU. | ||
generator.Add<ReLULayer<> >(); | ||
// Adding second bilinear interpolation layer. | ||
generator.Add<BilinearInterpolation<> >(28, 28, 56, 56, noiseDim / 4); | ||
// Adding third convolution layer. | ||
generator.Add<Convolution<> >(noiseDim / 4, 1, 3, 3, 2, 2, 1, 1, 56, 56); | ||
// Adding final tanh layer. | ||
generator.Add<TanHLayer<> >(); | ||
|
||
// Creating GAN. | ||
GaussianInitialization gaussian(0, 1); | ||
ens::Adam optimizer(stepSize, // Step size of optimizer. | ||
batchSize, // Batch size. | ||
0.9, // Exponential decay rate for first moment estimates. | ||
0.999, // Exponential decay rate for weighted norm estimates. | ||
eps, // Value used to initialize the mean squared gradient parameter. | ||
numIterations, // iterPerCycle// Maximum number of iterations. | ||
tolerance, // Tolerance. | ||
shuffle); // Shuffle. | ||
std::function<double()> noiseFunction = []() { | ||
return math::RandNormal(0, 1);}; | ||
GAN<FFN<SigmoidCrossEntropyError<> >, GaussianInitialization, | ||
std::function<double()> > gan(generator, discriminator, | ||
gaussian, noiseFunction, noiseDim, batchSize, generatorUpdateStep, | ||
discriminatorPreTrain, multiplier); | ||
swaingotnochill marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
std::cout << "Training ... " << std::endl; | ||
|
||
const clock_t beginTime = clock(); | ||
// Cycles for monitoring training progress. | ||
for( size_t i = 0; i < cycles; i++) | ||
{ | ||
// Training the neural network. For first iteration, weights are random, | ||
// thus using current values as starting point. | ||
gan.Train(mnistDataset, //trainDataset. | ||
optimizer, | ||
ens::PrintLoss(), | ||
ens::ProgressBar(), | ||
ens::Report()); | ||
|
||
optimizer.ResetPolicy() = false; | ||
std::cout << " Model Performance " << | ||
gan.Evaluate(gan.Parameters(), // Parameters of the network. | ||
i, // Index of current input. | ||
batchSize); // Batch size. | ||
} | ||
|
||
std::cout << " Time taken to train -> " << float(clock()-beginTime) / CLOCKS_PER_SEC << "seconds" << std::endl; | ||
|
||
// Let's save the model. | ||
data::Save("./saved_models/ganMnist_25epochs.bin", "ganMnist", gan); | ||
std::cout << "Model saved in mnist_gan/saved_models." << std::endl; | ||
std::cout << "\n"; | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
#include <mlpack/core.hpp> | ||
|
||
#include <mlpack/core/data/split_data.hpp> | ||
#include <mlpack/core/data/save.hpp> | ||
|
||
|
||
#include <mlpack/methods/ann/init_rules/gaussian_init.hpp> | ||
#include <mlpack/methods/ann/loss_functions/sigmoid_cross_entropy_error.hpp> | ||
#include <mlpack/methods/ann/gan/gan.hpp> | ||
#include <mlpack/methods/ann/layer/layer.hpp> | ||
#include <mlpack/methods/softmax_regression/softmax_regression.hpp> | ||
|
||
#include <ensmallen.hpp> | ||
|
||
using namespace mlpack; | ||
using namespace mlpack::ann; | ||
|
||
int main() | ||
{ | ||
size_t discriminatorPreTrain = 5; | ||
size_t batchSize = 5; | ||
size_t noiseDim = 100; | ||
size_t generatorUpdateStep = 1; | ||
size_t numSamples = 10; | ||
double multiplier = 10; | ||
bool loadData = false; | ||
|
||
arma::mat trainData,inputData, validData; | ||
trainData.load("./dataset/mnist_first250_training_4s_and_9s.arm"); | ||
|
||
// If you want to load other mnist data, then uncomment the below lines in the "if" statement to remove and prepare the data for your test. | ||
// if(loadData) | ||
// { | ||
|
||
// inputData.load("File Path"); | ||
|
||
// // Removing the headers. | ||
// inputData = inputData.submat(0, 1, inputData.n_rows - 1, inputData.n_cols - 1); | ||
// inputData /= 255.0; // Note that if you are bringing all the values to 0-1, then in the output csv, you have to multiply all values by 255.0 | ||
|
||
// // Removing the labels. | ||
// inputData = inputData.submat(1, 0, inputData.n_rows - 1, inputData.n_cols - 1); | ||
|
||
// inputData = (inputData - 0.5) * 2; | ||
|
||
// data::Split(inputData, trainData, validData, 0.8); | ||
// } | ||
|
||
arma::arma_rng::set_seed_random(); | ||
|
||
// Define noise function. | ||
std::function<double ()> noiseFunction = [](){ return math::Random(-8, 8) + | ||
math::RandNormal(0, 1) * 0.01;}; | ||
|
||
// Define generator. | ||
FFN<SigmoidCrossEntropyError<> > generator; | ||
|
||
// Define discriminator. | ||
FFN<SigmoidCrossEntropyError<> > discriminator; | ||
|
||
// Define GaussinaInitialization. | ||
GaussianInitialization gaussian(0,1); | ||
|
||
// Define GAN class. | ||
GAN<FFN<SigmoidCrossEntropyError<> >, GaussianInitialization, | ||
std::function<double()> > gan(generator, discriminator, | ||
gaussian, noiseFunction, noiseDim, batchSize, generatorUpdateStep, | ||
discriminatorPreTrain, multiplier); | ||
|
||
// Load the saved model. | ||
data::Load("./saved_models/ganMnist_25epochs.bin", "ganMnist", gan); | ||
|
||
/*--------------Sampling-----------------------------------------*/ | ||
|
||
std::cout << "Sampling...." << std::endl; | ||
|
||
// Noise matrix. | ||
arma::mat noise(noiseDim, batchSize); | ||
|
||
// Dimensions of the image. | ||
size_t dim = std::sqrt(trainData.n_rows); | ||
|
||
// Matrix to store the generated data. | ||
arma::mat generatedData(2 * dim, dim * numSamples); | ||
|
||
|
||
for (size_t i = 0; i < numSamples; ++i) | ||
{ | ||
arma::mat samples; | ||
swaingotnochill marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
// Create random noise using noise function. | ||
noise.imbue([&]() { return noiseFunction(); }); | ||
|
||
// Pass noise through generator and store output in samples. | ||
gan.Generator().Forward(noise, samples); | ||
|
||
// Reshape and Transpose the samples output. | ||
samples.reshape(dim, dim); | ||
samples = samples.t(); | ||
|
||
// Store the output sample in a dimxdim grid in final output matrix. | ||
generatedData.submat(0, i * dim, dim - 1, i * dim + dim - 1) = samples; | ||
|
||
// Add the image from original train data to compare. | ||
samples = trainData.col(math::RandInt(0, trainData.n_cols)); | ||
samples.reshape(dim, dim); | ||
samples = samples.t(); | ||
generatedData.submat(dim, | ||
i * dim, 2 * dim - 1, i * dim + dim - 1) = samples; | ||
} | ||
// Save the output as csv. | ||
data::Save("./samples_csv_files/sample.csv", generatedData, false, false); | ||
|
||
std::cout << "Output generated!" << std::endl; | ||
std::cout << "\n"; | ||
} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.