
LLM Scraper is a TypeScript library that allows you to extract structured data from any webpage using LLMs.
Important
LLM Scraper was updated to version 1.6.
The new version comes with Vercel AI SDK 4 support, JSON Schema, better type-safety, improved code generation and updated examples.
Tip
Under the hood, it uses function calling to convert pages to structured data. You can find more about this approach here.
- Supports GPT, Sonnet, Gemini, Llama, Qwen model series
- Schemas defined with Zod or JSON Schema
- Full type-safety with TypeScript
- Based on Playwright framework
- Streaming objects
- Code-generation
- Supports 4 formatting modes:
html
for loading pre-processed HTMLraw_html
for loading raw HTML (no processing)markdown
for loading markdowntext
for loading extracted text (using Readability.js)image
for loading a screenshot (multi-modal only)
Make sure to give it a star!

-
Install the required dependencies from npm:
npm i zod playwright llm-scraper
-
Initialize your LLM:
OpenAI
npm i @ai-sdk/openai
import { openai } from '@ai-sdk/openai' const llm = openai.chat('gpt-4o')
Anthropic
npm i @ai-sdk/anthropic
import { anthropic } from '@ai-sdk/anthropic' const llm = anthropic('claude-3-5-sonnet-20240620')
Google
npm i @ai-sdk/google
import { google } from '@ai-sdk/google' const llm = google('gemini-1.5-flash')
Groq
npm i @ai-sdk/openai
import { createOpenAI } from '@ai-sdk/openai' const groq = createOpenAI({ baseURL: 'https://api.groq.com/openai/v1', apiKey: process.env.GROQ_API_KEY, }) const llm = groq('llama3-8b-8192')
Ollama
npm i ollama-ai-provider
import { ollama } from 'ollama-ai-provider' const llm = ollama('llama3')
-
Create a new scraper instance provided with the llm:
import LLMScraper from 'llm-scraper' const scraper = new LLMScraper(llm)
In this example, we're extracting top stories from HackerNews:
import { chromium } from 'playwright'
import { z } from 'zod'
import { openai } from '@ai-sdk/openai'
import LLMScraper from 'llm-scraper'
// Launch a browser instance
const browser = await chromium.launch()
// Initialize LLM provider
const llm = openai.chat('gpt-4o')
// Create a new LLMScraper
const scraper = new LLMScraper(llm)
// Open new page
const page = await browser.newPage()
await page.goto('https://news.ycombinator.com')
// Define schema to extract contents into
const schema = z.object({
top: z
.array(
z.object({
title: z.string(),
points: z.number(),
by: z.string(),
commentsURL: z.string(),
})
)
.length(5)
.describe('Top 5 stories on Hacker News'),
})
// Run the scraper
const { data } = await scraper.run(page, schema, {
format: 'html',
})
// Show the result from LLM
console.log(data.top)
await page.close()
await browser.close()
Output
[
{
title: "Palette lighting tricks on the Nintendo 64",
points: 105,
by: "ibobev",
commentsURL: "https://news.ycombinator.com/item?id=44014587",
},
{
title: "Push Ifs Up and Fors Down",
points: 187,
by: "goranmoomin",
commentsURL: "https://news.ycombinator.com/item?id=44013157",
},
{
title: "JavaScript's New Superpower: Explicit Resource Management",
points: 225,
by: "olalonde",
commentsURL: "https://news.ycombinator.com/item?id=44012227",
},
{
title: "\"We would be less confidential than Google\" Proton threatens to quit Switzerland",
points: 65,
by: "taubek",
commentsURL: "https://news.ycombinator.com/item?id=44014808",
},
{
title: "OBNC – Oberon-07 Compiler",
points: 37,
by: "AlexeyBrin",
commentsURL: "https://news.ycombinator.com/item?id=44013671",
}
]
More examples can be found in the examples folder.
Replace your run
function with stream
to get a partial object stream (Vercel AI SDK only).
// Run the scraper in streaming mode
const { stream } = await scraper.stream(page, schema)
// Stream the result from LLM
for await (const data of stream) {
console.log(data.top)
}
Using the generate
function you can generate re-usable playwright script that scrapes the contents according to a schema.
// Generate code and run it on the page
const { code } = await scraper.generate(page, schema)
const result = await page.evaluate(code)
const data = schema.parse(result)
// Show the parsed result
console.log(data.news)
As an open-source project, we welcome contributions from the community. If you are experiencing any bugs or want to add some improvements, please feel free to open an issue or pull request.