Skip to content

OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

License

Notifications You must be signed in to change notification settings

minha62/OpenPCDet

 
 

Repository files navigation

Original Repository: open-mmlab/OpenPCDet
pclpy Repository: davidcaron/pclpy


OpenPCDet Installation


Change Record

  1. Add a file convert_pcd2bin.py
    📌 need pclpy
  2. pcdet/datasets/kitti/kitti_dataset.py
  3. tools/cfgs/kitti_models/voxel_rcnn_car.yaml
  4. tools/cfgs/dataset_configs/kitti_dataset.yaml
  5. Add a file match_label.py
    • label이 없는 calib, image, velodyne 파일 삭제

Commands

  • Convert pcd files to bin files
$ conda activate pclpy
$ python convert_pcd2bin.py
$ conda deactivate
  • Generate the data infos
    kitti_dataset.yaml에서 DATA_PATH 변경해주기!
$ conda activate OpenPCDet
$ cd ~/OpenPCDet
$ python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml
  • Train with a single GPU
    voxel_rcnn_car.yaml, pv_rcnn.yaml 사용
$ cd ~/OpenPCDet/tools
$ python train.py --cfg_file cfgs/kitti_models/voxel_rcnn_car.yaml --batch_size 1 --epochs 10000 
  • Run the demo with the trained model and custom point cloud data
$ cd ~/OpenPCDet/tools
$ python demo.py --cfg_file cfgs/kitti_models/voxel_rcnn_car.yaml \
    --ckpt pv_rcnn_8369.pth \
    --data_path ${POINT_CLOUD_DATA}
  • Test and evaluate the trained models
    • To test the specific checkpoint, use --ckpt ${CKPT}
    • To test all the saved checkpoints, use --eval_all
$ python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}
$ python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all

<주의사항>

nas에 있는 파일을 불러오는 경우 permission denied 에러 뜰 수 있음.
이땐 conda activate ${환경이름}후에 python 명령어 쓰지 말고, sudo ~/anaconda3/envs/${환경이름}/bin/python 뒤에 명령어 쓰기
ex) python convert_pcd2bin.py 대신 sudo ~/anaconda3/envs/pclpy/bin/python convert_pcd2bin.py

About

OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 85.4%
  • Cuda 8.8%
  • C++ 5.1%
  • Other 0.7%