Skip to content

【开源实习】MiniCPM-Llama3模型迁移 #2052

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added __init__.py
Empty file.
Empty file added models/__init__.py
Empty file.
16 changes: 16 additions & 0 deletions models/miniCPM/_init_.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
from .miniCPM_config import MiniCPMConfig
from .miniCPM_model import MiniCPMModel
from .miniCPM_tokenizer import MiniCPMTokenizer

__all__ = ["MiniCPMConfig", "MiniCPMModel", "MiniCPMTokenizer"]

# tests/ut/models/minicpm/test_tokenizer_minicpm.py
import mindspore
from mindnlp.models.miniCPM import miniCPM_model, miniCPM_config

def test_minicpm_forward():
config = MiniCPMConfig()
model = MiniCPMModel(config)
dummy_input = mindspore.Tensor([[1, 2, 3], [4, 5, 6]], mindspore.int32)
output = model(dummy_input)
assert output.shape == (2, 3, config.hidden_size)
49 changes: 49 additions & 0 deletions models/miniCPM/miniCPM_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
class MiniCPMConfig:
model_type = "minicpm"

def __init__(
self,
hidden_size=4096,
intermediate_size=14336,
num_attention_heads=32,
num_hidden_layers=32,
num_key_value_heads=8,
vocab_size=128256,
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-5,
pad_token_id=None,
bos_token_id=128000,
eos_token_id=128001,
hidden_act="silu",
rope_theta=500000.0,
attention_dropout=0.0,
tie_word_embeddings=False,
use_cache=False,
torch_dtype="float16",
**kwargs,
):
# ❌ 去掉 super().__init__()

self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id

self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_key_value_heads = num_key_value_heads
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.hidden_act = hidden_act
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.tie_word_embeddings = tie_word_embeddings
self.use_cache = use_cache
self.torch_dtype = torch_dtype

for k, v in kwargs.items():
setattr(self, k, v)
99 changes: 99 additions & 0 deletions models/miniCPM/miniCPM_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
import mindspore
import mindspore.nn as nn
import mindspore.ops as ops
import math
#from miniCPM_config import MiniCPMConfig
from .miniCPM_config import MiniCPMConfig



class RMSNorm(nn.Cell):
def __init__(self, hidden_size, eps=1e-5):
super().__init__()
self.eps = eps
self.weight = mindspore.Parameter(ops.ones(hidden_size), name="rmsnorm_weight")

def construct(self, hidden_states):
norm = hidden_states.pow(2).mean(-1, keep_dims=True).add(self.eps).sqrt()
return self.weight * hidden_states / norm


class MLP(nn.Cell):
def __init__(self, config: MiniCPMConfig):
super().__init__()
self.gate_proj = nn.Dense(config.hidden_size, config.intermediate_size)
self.up_proj = nn.Dense(config.hidden_size, config.intermediate_size)
self.down_proj = nn.Dense(config.intermediate_size, config.hidden_size)
self.act = nn.SiLU()

def construct(self, x):
return self.down_proj(self.act(self.gate_proj(x)) * self.up_proj(x))


class Attention(nn.Cell):
def __init__(self, config: MiniCPMConfig):
super().__init__()
self.num_heads = config.num_attention_heads
self.head_dim = config.hidden_size // config.num_attention_heads
self.scale = self.head_dim ** -0.5

self.q_proj = nn.Dense(config.hidden_size, config.hidden_size)
self.k_proj = nn.Dense(config.hidden_size, config.hidden_size)
self.v_proj = nn.Dense(config.hidden_size, config.hidden_size)
self.out_proj = nn.Dense(config.hidden_size, config.hidden_size)

self.softmax = nn.Softmax(axis=-1)

def construct(self, x):
B, T, C = x.shape
q = self.q_proj(x).view(B, T, self.num_heads, self.head_dim).transpose(0, 2, 1, 3)
k = self.k_proj(x).view(B, T, self.num_heads, self.head_dim).transpose(0, 2, 1, 3)
v = self.v_proj(x).view(B, T, self.num_heads, self.head_dim).transpose(0, 2, 1, 3)

attn_scores = ops.matmul(q, k.transpose(0, 1, 3, 2)) * self.scale
attn_weights = self.softmax(attn_scores)
attn_output = ops.matmul(attn_weights, v)

attn_output = attn_output.transpose(0, 2, 1, 3).view(B, T, C)
return self.out_proj(attn_output)


class DecoderLayer(nn.Cell):
def __init__(self, config: MiniCPMConfig):
super().__init__()
self.ln1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.self_attn = Attention(config)
self.ln2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mlp = MLP(config)

def construct(self, x):
x = x + self.self_attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x


class MiniCPMModel(nn.Cell):
def __init__(self, config: MiniCPMConfig):
super().__init__()
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.CellList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.ln_f = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

def construct(self, input_ids):
x = self.embed_tokens(input_ids)
for layer in self.layers:
x = layer(x)
x = self.ln_f(x)
return x


class MiniCPMForCausalLM(nn.Cell):
def __init__(self, config: MiniCPMConfig):
super().__init__()
self.model = MiniCPMModel(config)
self.lm_head = nn.Dense(config.hidden_size, config.vocab_size, has_bias=False)

def construct(self, input_ids):
hidden_states = self.model(input_ids)
logits = self.lm_head(hidden_states)
return logits
36 changes: 36 additions & 0 deletions models/miniCPM/miniCPM_tokenizer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
from tokenizers import Tokenizer
import os

class MiniCPMTokenizer:
def __init__(self, tokenizer_file: str):
self.tokenizer_file = tokenizer_file
self.tokenizer = Tokenizer.from_file(tokenizer_file)

def tokenize(self, text):
return self.tokenizer.encode(text).tokens

def convert_tokens_to_ids(self, tokens):
return [self.tokenizer.token_to_id(tok) for tok in tokens]

def convert_ids_to_tokens(self, ids):
return [self.tokenizer.id_to_token(i) for i in ids]

def encode(self, text):
return self.tokenizer.encode(text).ids

def decode(self, token_ids):
return self.tokenizer.decode(token_ids)

if __name__ == "__main__":
tokenizer_path = "D:/个人/MiniCPM_Llama3/minicpm_assets/tokenizer.json"
tokenizer = MiniCPMTokenizer(tokenizer_path)

text = "你好 MiniCPM"
tokens = tokenizer.tokenize(text)
ids = tokenizer.convert_tokens_to_ids(tokens)
decoded = tokenizer.decode(ids)

print("原文:", text)
print("分词:", tokens)
print("Token IDs:", ids)
print("解码:", decoded)
Loading