AI in Science tutorial given at AIMS, Cape Town, South Africa, 2025
Mikael Mieskolainen
Department of Physics and I-X Centre for AI in Science, Imperial College London
[email protected]
conda env create -f environment.yml
conda activate aims25
pip install -r requirements.txt
Part 4: Amortized Bayesian Posterior
See environment.yml
and requirements.txt
for Python and library versions.
xaims/qedgen.py - QED 2->2 Monte Carlo event generator
xaims/flows.py - Coupling based Normalizing Flows
xaims/splines.py - Splines for Spline Couplings
xaims/ddpm.py - Discrete-time DDPM diffusion
xaims/sde.py - Continuous-time SDE diffusion
xaims/transforms.py - Pre-processing transforms
xaims/aux.py - Auxialiary functions
xaims/visualize.py - Plotting functions
xaims/coolplots.py - Illustrative simulations
If you use this in your work, you can cite the repository:
@software{aims25,
author = "{Mikael Mieskolainen}",
title = "Synthetic Quantum Electrodynamics via Generative AI",
url = "https://github.com/mieskolainen/aims25",
version = {0.1},
date = {2025-XX-YY},
}