Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[VSINPU]Split\Pad and some element-wise OPs support #22916

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions cmake/onnxruntime_python.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,7 @@ target_link_libraries(onnxruntime_pybind11_state PRIVATE
onnxruntime_session
${onnxruntime_libs}
${PROVIDERS_NNAPI}
${PROVIDERS_VSINPU}
${PROVIDERS_XNNPACK}
${PROVIDERS_COREML}
${PROVIDERS_RKNPU}
Expand Down Expand Up @@ -1018,4 +1019,13 @@ if (onnxruntime_USE_QNN)
endif()
endif()

if (onnxruntime_USE_VSINPU)
add_custom_command(
TARGET onnxruntime_pybind11_state POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
$<TARGET_FILE:onnxruntime_providers_vsinpu>
$<TARGET_FILE_DIR:${build_output_target}>/onnxruntime/capi/
)
endif()

endif()
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ class ConvOpBuilder : public BaseOpBuilder {
}
}
} else {
auto pads = helper.Get("pads", std::vector<uint32_t>{0U, 0U});
auto pads = helper.Get("pads", std::vector<uint32_t>{0U, 0U, 0U, 0U});
if (group != 1 && group != weight_tensor->GetShape()[OChannel_idx]) {
if (is_1d_conv) {
op = graph_ep->GetGraph()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,12 @@ ELEMENTWISE_OP_BUILDER(Floor, Floor);
ELEMENTWISE_OP_BUILDER(Log, Log);
ELEMENTWISE_OP_BUILDER(Sin, Sin);
ELEMENTWISE_OP_BUILDER(HardSwish, HardSwish);
ELEMENTWISE_OP_BUILDER(Neg, Neg);
ELEMENTWISE_OP_BUILDER(Not, LogicalNot);
ELEMENTWISE_OP_BUILDER(Ceil, Ceil);
ELEMENTWISE_OP_BUILDER(Round, Round);
ELEMENTWISE_OP_BUILDER(Min, Minimum);
ELEMENTWISE_OP_BUILDER(Max, Maximum);

class PowOpBuilder : public BaseOpBuilder {
bool IsOpSupported(const onnxruntime::GraphViewer& graph_viewer,
Expand Down
191 changes: 191 additions & 0 deletions onnxruntime/core/providers/vsinpu/builders/impl/pad_op_builder.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
/****************************************************************************

Check warning

Code scanning / lintrunner

CLANGFORMAT/format

See https://clang.llvm.org/docs/ClangFormat.html. Run `lintrunner -a` to apply this patch.
*
* Copyright (c) 2024 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#pragma once
#include <memory>
#include <vector>
#include <utility>
#include <limits>
#include <algorithm>
#include "core/optimizer/initializer.h"
#include "core/providers/vsinpu/builders/impl/base_op_builder.h"
#include "core/providers/common.h"
#include "core/providers/shared/utils/utils.h"

namespace onnxruntime {
namespace vsi {
namespace npu {

typedef tim::vx::ops::PadV2::pad_mode_type PadMode;

class PadOpBuilder : public BaseOpBuilder {
public:
int GetMinSupportedOpSet(const NodeUnit& /* node_unit */) const override { return 11; }
bool IsOpSupported(const onnxruntime::GraphViewer& graph_viewer,
const Node* node) const override {
NodeAttrHelper helper(*node);
const auto mode = helper.Get("mode", "constant");
auto input_defs = node->InputDefs();
size_t num_inputs = input_defs.size();
auto input_shape = vsi::npu::util::GetTensorShape(*input_defs[0]);
int32_t rank = input_shape.NumDimensions();
const auto& initializers = graph_viewer.GetAllInitializedTensors();

if (mode == "wrap") {
LOGS_DEFAULT(WARNING) << "`wrap` mode Pad is not currently supported for now.";
return false;
}
if (mode == "constant") {
if (num_inputs > 2 && input_defs[2]->Exists()) {
// only support if `constant_value` input is a constant initializer
if (!Contains(initializers, input_defs[2]->Name())) {
LOGS_DEFAULT(WARNING) << "constant_value must be a constant initializer.";
return false;
}
}
}
// only support if `pads` input is known and does not contain negative values
{
const auto* pads_initializer = graph_viewer.GetConstantInitializer(input_defs[1]->Name());
if (!pads_initializer) {
LOGS_DEFAULT(WARNING) << "pads must be a constant initializer";
return false;
}

Initializer unpacked_tensor(*pads_initializer);
auto tensor_data = unpacked_tensor.DataAsSpan<int64_t>();
for (size_t i = 0; i < unpacked_tensor.size(); i++) {
if (tensor_data[i] < 0) {
LOGS_DEFAULT(WARNING) << "Negative pad value is not supported: pads["
<< i << "] = " << tensor_data[i];
return false;
}
}
}
return true;
}

bool HasSupportedInputOutputsImpl(const InitializedTensorSet& initializers,
const NodeUnit& node_unit) const override {
for (size_t i = 0; i < node_unit.Inputs().size(); ++i) {
const auto& iodef = node_unit.Inputs()[i];
if (0 == i) {
if (!util::IsTypeSupported(&iodef.node_arg) ||
(*iodef.node_arg.Type() == "tensor(int64)") ||
(*iodef.node_arg.Type() == "tensor(bool)")) {
LOGS_DEFAULT(WARNING) << "Unspport tensor data type:" << *iodef.node_arg.Type();
return false;
}
} else if (1 == i) {
if (!Contains(initializers, iodef.node_arg.Name())) {
LOGS_DEFAULT(WARNING) << "pads must be a constant initializer.";
return false;
}
} else if (2 == i) {
if (iodef.node_arg.Exists() && !Contains(initializers, iodef.node_arg.Name())) {
LOGS_DEFAULT(WARNING) << "constant_value must be a constant initializer.";
return false;
}
} else if (i == 3) {
if (!Contains(initializers, iodef.node_arg.Name())) {
LOGS_DEFAULT(WARNING) << "axes must be a constant initializer..";
return false;
}
}
}
return true;
}

bool HandleBuildOp(vsi::npu::GraphEP* graph_ep,
std::vector<std::shared_ptr<tim::vx::Tensor>>& inputs,
std::vector<std::shared_ptr<tim::vx::Tensor>>& outputs,
const NodeUnit& node_unit) override {
LOGS_DEFAULT(VERBOSE) << "Creating Pad Op.";
NodeAttrHelper helper(node_unit);
const auto mode = helper.Get("mode", "constant");
auto input_defs = node_unit.Inputs();
PadMode pad_mode = PadMode::PAD_MODE_CONSTANT;
float const_val = 0.0f;
std::vector<int64_t> axes_tensor_data;
int32_t input_rank = inputs[0]->GetShape().size();

if (mode == "constant") {
pad_mode = PadMode::PAD_MODE_CONSTANT;
} else if (mode == "reflect") {
pad_mode = PadMode::PAD_MODE_REFLECT;
} else if (mode == "edge") {
pad_mode = PadMode::PAD_MODE_EDGE;
} else {
LOGS_DEFAULT(WARNING) << "`wrap` mode Pad is not currently supported for now.";
return false;
}

// `pads` input
std::vector<int64_t> onnx_pads(inputs[1]->GetSpec().GetElementNum());
inputs[1]->CopyDataFromTensor(onnx_pads.data());

// `constant_value` input
if (inputs.size() > 2 && pad_mode == PadMode::PAD_MODE_CONSTANT) {
if (input_defs[2].node_arg.Exists()) {
inputs[2]->CopyDataFromTensor(&const_val);
}
}
// `axes` input
if (inputs.size() > 3) {
// optional input axes is provided, use axes initializer data
std::vector<int64_t> axes_tensor(inputs[3]->GetSpec().GetElementNum());
inputs[3]->CopyDataFromTensor(axes_tensor.data());
std::transform(
axes_tensor.begin(), axes_tensor.end(), std::back_inserter(axes_tensor_data),
[input_rank](int64_t axis) { return HandleNegativeAxis(axis, input_rank); });
} else {
// if not provided, make a default axes as [0, 1, ..., input_rank - 1]
std::vector<int64_t> default_axes(input_rank);
std::iota(std::begin(default_axes), std::end(default_axes), 0);
axes_tensor_data = std::move(default_axes);
}

int64_t num_axes = axes_tensor_data.size();
std::vector<uint32_t> front_size(input_rank, 0);
std::vector<uint32_t> back_size(input_rank, 0);

int64_t axes_index = 0;
for (int64_t axes : axes_tensor_data) {
front_size[axes] = onnx_pads[axes_index];
back_size[axes] = onnx_pads[axes_index + num_axes];
axes_index++;
}

std::reverse(front_size.begin(), front_size.end());
std::reverse(back_size.begin(), back_size.end());

auto op = graph_ep->GetGraph()->CreateOperation<tim::vx::ops::PadV2>(
front_size, back_size, const_val, pad_mode);
op->BindInput(inputs[0]).BindOutputs(outputs);
graph_ep->GetOps().push_back(std::move(op));
return true;
}
};
} // namespace npu
} // namespace vsi
} // namespace onnxruntime
Loading