Use Skipper to build & test your project in an isolated environment, using Docker containers with pre-defined sane configuration. Skipper allows you to execute makefile targets inside a container (or just run arbitrary commands). You can also use Skipper to build your development and production containers.
It is recommended to install Skipper directly from PyPi:
sudo pip install strato-skipper
You can also install Skipper from source:
git clone http://github.com/Stratoscale/skipper
sudo make install
Configure bash completion for skipper by sourcing the completion script in your ~/.bashrc file:
echo 'source <(skipper completion)' >>~/.bashrc
Skipper supports building and running in Python3 environment Set your locale to UTF-8:
export LC_ALL="en_US.UTF-8"
export LANG="en_US.UTF-8"
Skipper can serve as your primary tool for your daily development tasks:
- Use
skipper build
to build the images defined by the Dockerfiles in your repository. All the images will be automatically tagged with the COMMIT_ID. - Use
skipper push
to publish your images. - Use
skipper images
to list your images. - Use
skipper rmi
to delete your images. - Use
skipper make
to execute makefile targets inside a container. - Use
skipper run
to run arbitrary commands inside a container. - Use
skipper shell
to get an interactive shell inside a container.
-v, --verbose Increase verbosity
--registry URL of the docker registry
--build-container-image Image to use as build container
--build-container-tag Tag of the build container
--build-container-net Network to connect the build container (default: net=host)
--env-file Environment variables file/s to pass to the container
--help Show this message and exit.
As a convention, skipper infers the docker images from the Dockerfiles in the top directory of your repository. For example, assuming that there are 3 Dockerfile in the top directory of the repository:
Dockerfile.service1
Dockerfile.service2
Dockerfile.development
To build the image that corresponeds to Dockerfile.service1
, run:
skipper build service1
In the same way you can build the image corresponded to Dockerfile.development
:
skipper build development
You can also build mutliple images with single command:
skipper build development service2
A context path can be added to the build command, The build’s context is the files at a specified location PATH, the default is current directory:
skipper buid service1 --container-context /path/to/context/dir
If no image is specifed skipper will build all detected images:
skipper build
If you don't want to store all the Dockerfiles under the top directory of the project, you can specify the project's containers in skipper's config file (see below).
Once you've built the images of your repositories as described above. You can publish them by pushing them to the registry.
To push the service1
image, run:
skipper --registry some-registry push service1
Note that the registry in this command must be the same registry used while building the image.
To list local images of your repository, run:
skipper images
In order to also list also images that were pushed to the registry, run:
skipper --registry some-registry images -r
To delete an image of your repository, run:
skipper rmi service1 <tag>
In order to delete the image from the registry, run:
skipper --registry some-registry rmi -r service1 <tag>
You can execute a Makefile target inside a container. This is good for keeping the development in an isolated environment, without installing development tools on the host. Once a development container is defined and built, it can be shared among the team member, assuring all of them use exactly thg same development environment.
Assuming your project has a Makefile with a tests
target, you can run:
skipper --registry some-registry --build-container-image development --build-container-tag latest \
make tests
If your Makefile is not standard (i.e. Makefile.arm32
) you can pass it to the make command:
skipper --registry some-registry --build-container-image development --build-container-tag latest \
make -f Makefile.arm32 tests
You can also run arbitrary commands inside your containers.
skipper --registry some-registry --build-container-image development --build-container-tag latest \
run gcc myprog.c -o myprog
You can get a shell inside your containers.
skipper --registry some-registry --build-container-image development --build-container-tag latest \
shell
Skipper allows you to define commonly used parameters in a configuration file skipper.yaml
at the top directory of your repositry.
registry: some-registry
build-container-image: development
build-container-tag: latest
container-context: /path/to/context/dir
make:
makefile: Makefile.arm32
containers:
service1: path/to/service1/dockerfile
service2: path/to/service2/dockerfile
env:
VAR: value
env_file: path/to/env_file.env
Using the above configuration file, we now can run a simplified version of the make command described above:
skipper make tests
For shell
, run
& make
commands:
By default, when you run skipper on a linux machine it will use the host network and no mapping required.
For macos and windows machines where the host network is unsupported or for a custom network, you can publish a port and make it available to services outside of the container using the --publish or -p flag.
skipper make -p 123:123 tests
skipper make -p 123-130:123-130 tests
For shell
, run
& make
commands:
You can use -e
in order to pass environment variables to the container.
skipper make -e regex=test1 tests
Your configuration file can contain environment variables, Skipper will set the specified environment variables in the container.
env:
VAR: value
You can add an environment variables file (or multiple files) using --env-file
.
This file should use the syntax =value (which sets the variable to the given value) or
(which takes the value from the local environment), and # for comments.
The variables defined in this file will be exported to the container.
Such file can look like this:
$ cat env_file.env
# This is a comment
KEY1=value1
KEY2=value2
KEY3
Skipper configuration file can include the environment variables file:
env_file:
- /path/to/env_file1.env
- /path/to/env_file2.env
Skipper uses the variable values from the shell environment in which skipper is run. It’s possible to use environment variables in your shell to populate values For example, suppose the shell contains EXTERNAL_PORT=5000 and you supply this configuration:
env:
EXTERNAL_PORT: $EXTERNAL_PORT
When you run Skipper command with this configuration, Skipper looks for the EXTERNAL_PORT environment variable in the shell and substitutes its value in.In this example, Skipper resolves the $EXTERNAL_PORT to "5000" and will set EXTERNAL_PORT=5000 environment in the container.
If an environment variable is not set, Skipper substitutes with an empty string.
Both
You can use a $$ (double-dollar sign) when your configuration needs a literal dollar sign. This also prevents Skipper from interpolating a value, so a $$ allows you to refer to environment variables that you don’t want processed by Skipper.
env:
VAR: $$VAR_NOT_INTERPOLATED
Skipper supports evaluating shell commands inside its configuration file using $(command)
notation.
e.g.
env:
VAR: $(expr ${MY_NUMBER:-5} + 5)
volumes:
- $(which myprogram):/myprogram
Skipper can bind-mount a host directory into the container. you can add volumes in the configuration file:
volumes:
- /tmp:/tmp:rw
- ${HOME}/.netrc:/root/.netrc
- ${HOME}/.gocache:/tmp/.gocache
Skipper default to the the project directory as the working directory for the run
, make
and shell
commands,
you can override the workdir by specifying it in the configuration file:
workdir: /path/to/workdir
Skipper default to the the project base directory (e.g. /path/to/project/../) as the workspace for the run
, make
and shell
commands,
Note that the workspace directory is mounted by default.
you can override the workspace directory by specifying it in the configuration file
workdir: $PWD
Skipper sets environemnt variables to inform the user about the underline system: CONTAINER_RUNTIME_COMMAND - The container conmmand used to run the skipper container. podman/docker