Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tutorial Notebooks #95

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added dist/votekit-1.0.0-py3-none-any.whl
Binary file not shown.
Binary file added dist/votekit-1.0.0.tar.gz
Binary file not shown.
135 changes: 135 additions & 0 deletions notebooks/.ipynb_checkpoints/load_clean-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
{
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

lets keep the .ipynb_checkpoints and dist/ folder out of the main branch so the repo doesn't get cluttered !

"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is a tutorial on loading in an election dataset and cleaning ballots.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from votekit.cvr_loaders import load_blt\n",
"import votekit.cleaning as clean"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's first load in our cvr into a preference profile\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# need to make the scottish election data importable\n",
"\n",
"pp, seats = load_blt(\"...\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can clean the ballots from this election.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we want to remove a candidate, we can call remove_noncands() from the package as shown below.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"cleaned_pp = clean.remove_noncands(pp, [\"Graham HUTCHISON (C)\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also write our own cleaning rule with the helper function clean_profile(). The following example is a cleaning rule truncates the ballot to n-ranks.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from votekit.cleaning import clean_profile\n",
"from votekit.pref_profile import PreferenceProfile\n",
"from votekit.ballot import Ballot\n",
"\n",
"\n",
"def truncate(n: int, pp: PreferenceProfile):\n",
" def truncate_ballot(ballot: Ballot):\n",
" return Ballot(ranking=ballot.ranking[:n], weight=ballot.weight)\n",
"\n",
" pp_clean = clean_profile(pp=pp, clean_ballot_func=truncate_ballot)\n",
" return pp_clean"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cleaned_pp = truncate(n=3, pp=pp)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our preference profile is now cleaned, and we can save it as an csv for future use.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cleaned_pp.to_csv('path/to/save')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,7 @@
"outputs": [],
"source": [
"import votekit.ballot_generator as bg\n",
"from votekit.plots.profile_plots import plot_summary_stats\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
"from votekit.plots.profile_plots import plot_summary_stats"
]
},
{
Expand Down
176 changes: 176 additions & 0 deletions notebooks/election_simulation.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This tutorial shows you how to simulate elections using VoteKit.\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'votekit.elections'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[12], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39m# from votekit.utils import make_ballot\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mvotekit\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39melections\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39melection_types\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39melections\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mvotekit\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mpref_profile\u001b[39;00m \u001b[39mimport\u001b[39;00m PreferenceProfile\n\u001b[1;32m 4\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mvotekit\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39melections\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mtransfers\u001b[39;00m \u001b[39mimport\u001b[39;00m fractional_transfer\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'votekit.elections'"
]
}
],
"source": [
"# from votekit.utils import make_ballot\n",
"import votekit.elections.election_types as elections\n",
"from votekit.pref_profile import PreferenceProfile\n",
"from votekit.elections.transfers import fractional_transfer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's first build our preference profile with synthetic ballots\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b1 = make_ballot(ranking=[\"A\", \"D\", \"E\", \"C\", \"B\"], weight=18)\n",
"b2 = make_ballot(ranking=[\"B\", \"E\", \"D\", \"C\", \"A\"], weight=12)\n",
"b3 = make_ballot(ranking=[\"C\", \"B\", \"E\", \"D\", \"A\"], weight=10)\n",
"b4 = make_ballot(ranking=[\"D\", \"C\", \"E\", \"B\", \"A\"], weight=4)\n",
"b5 = make_ballot(ranking=[\"E\", \"B\", \"D\", \"C\", \"A\"], weight=4)\n",
"b6 = make_ballot(ranking=[\"E\", \"C\", \"D\", \"B\", \"A\"], weight=2)\n",
"pp = PreferenceProfile(ballots=[b1, b2, b3, b4, b5, b6])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can define our set of elections to simulate.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_seats = 1\n",
"election_borda = elections.Borda(pp, seats=num_seats, score_vector=None)\n",
"election_irv = elections.STV(pp, fractional_transfer, seats=num_seats)\n",
"election_plurality = elections.Plurality(\n",
" pp, seats=num_seats, ballot_ties=False)\n",
"election_seq = elections.SequentialRCV(pp, seats=num_seats)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's run the elections. Running the elections will generate an election state, from which we can get the winners.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"election_state_borda = election_borda.run_election()\n",
"election_state_irv = election_irv.run_election()\n",
"election_state_plurality = election_plurality.run_election()\n",
"election_state_seq = election_seq.run_election()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"outcome_borda = election_state_borda.get_all_winners()\n",
"outcome_irv = election_state_irv.get_all_winners()\n",
"outcome_plurality = election_state_plurality.get_all_winners()\n",
"outcome_seq = election_state_seq.get_all_winners()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We should expect different results for different elections.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(outcome_borda)\n",
"print(outcome_irv)\n",
"print(outcome_plurality)\n",
"print(outcome_seq)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "csci1470 Python 3.9.12",
"language": "python",
"name": "csci1470"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading