Skip to content

First pass at intuitionizing Z/nZ from znle to znhash #4845

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 21 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 107 additions & 0 deletions iset.mm
Original file line number Diff line number Diff line change
Expand Up @@ -161828,6 +161828,113 @@ According to Wikipedia ("Integer", 25-May-2019,
ZVAXLXLYBXLXLXJXJXKXMXNCVATTYCXOYDUWDUWCUWFCTXPXHUVHUVITTYCXQXFYEDBTTWS
XRXSXTYA $.
$}

znle.l $e |- .<_ = ( le ` Y ) $.
$( The value of the ` Z/nZ ` structure. It is defined as the quotient ring
` ZZ / n ZZ ` , with an "artificial" ordering added. (In other words,
` Z/nZ ` is a _ring_ with an _order_ , but it is not an _ordered ring_ ,
which as a term implies that the order is compatible with the ring
operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.)
(Revised by AV, 13-Jun-2019.) $)
znle $p |- ( N e. NN0 -> .<_ = ( ( F o. <_ ) o. `' F ) ) $=
( wcel cple cfv cle cvv czring crg cn0 cnx ccom ccnv cop csts eqid fveq2d
co znval wceq a1i csn cqus zringring crsp rspex ax-mp eqeltri snexg fvexg
cqg sylancr eqgex qusex eqeltrid czrh cres zrhex resexg 3syl cxr cxp xrex
xpex lerelxr ssexi coexg sylancl cnvexg syl2anc pleslid setsslid 3eqtr4d
syl ) EUANZGOPZBUBOPCQUCZCUDZUCZUEUFUIZOPZDWJWFGWKOABCWJEFGHIJKLWJUGUJUHD
WGUKWFMULWFBRNZWJRNZWJWLUKWFBSSEUMZAPZVBUIZUNUIZRIWFSTNZWQRNZWRRNUOWFWSWP
RNZWTUOWFARNWORNXAASUPPZRHWSXBRNUOTSUQURUSEUAUTWOARRVAVCWPSTRVDVCWQSTRVEV
CVFZWFWHRNZWIRNZWNWFCRNZQRNXDWFCBVGPZFVHZRKWFWMXGRNXHRNXCBXGRXGUGVIXGFRVJ
VKVFZQVLVLVMVLVLVNVNVOVPVQCQRRVRVSWFXFXEXICRVTWEWHWIRRVRWARWJORBWBWCWAWD
$.
$}

${
$d x E $. $d x K $. $d x y N $. $d x y U $. $d x y Y $.
znval2.s $e |- S = ( RSpan ` ZZring ) $.
znval2.u $e |- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) $.
znval2.y $e |- Y = ( Z/nZ ` N ) $.
${
znval2.l $e |- .<_ = ( le ` Y ) $.
$( Self-referential expression for the ` Z/nZ ` structure. (Contributed
by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) $)
znval2 $p |- ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , .<_ >. ) ) $=
( cn0 wcel cnx cple cfv cc0 co ccom cop csts eqid czrh wceq cz cfzo cif
cres cle ccnv znval znle opeq2d oveq2d eqtr4d ) DJKZEBLMNZBUANDOUBUCODU
DPUEZUFZUGQUQUHQZRZSPBUOCRZSPABUQURDUPEFGHUQTZUPTZURTUIUNUTUSBSUNCURUOA
BUQCDUPEFGHVAVBIUJUKULUM $.
$}

${
znbaslem.e $e |- E = Slot ( E ` ndx ) $.
znbaslemnn.nn $e |- ( E ` ndx ) e. NN $.
znbaslem.n $e |- ( E ` ndx ) =/= ( le ` ndx ) $.
$( Lemma for ~ znbas . (Contributed by Mario Carneiro, 14-Jun-2015.)
(Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV,
13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV,
3-Nov-2024.) $)
znbaslemnn $p |- ( N e. NN0 -> ( E ` U ) = ( E ` Y ) ) $=
( wcel cfv co cvv czring crg cle eqid syl cn0 cnx cple cop csts csn cqg
wceq cqus zringring rspex ax-mp eqeltri snexg fvexg sylancr eqgex qusex
crsp eqeltrid czrh cc0 cz cfzo cif cres ccom ccnv znval cn plendxnn a1i
zrhex resexg cxr xrex lerelxr ssexi coexg sylancl cnvexg syl2anc setsex
cxp xpex syl3anc eqeltrd pleslid slotex ndxslid setsslnid znval2 fveq2d
eqtr4d ) DUALZBCMZBUBUCMZEUCMZUDUENZCMZECMWOBOLZWROLZWPWTUHWOBPPDUFZAMZ
UGNZUINZOGWOPQLZXEOLZXFOLUJWOXGXDOLZXHUJWOAOLXCOLXIAPUSMZOFXGXJOLUJQPUK
ULUMDUAUNXCAOOUOUPXDPQOUQUPXEPQOURUPUTZWOEOLXBWOEBWQBVAMZDVBUHVCVBDVDNV
EZVFZRVGZXNVHZVGZUDUENZOABXNXQDXMEFGHXNSXMSXQSVIWOXAWQVJLZXQOLZXROLXKXS
WOVKVLWOXOOLZXPOLZXTWOXNOLZROLYAWOXLOLZYCWOXAYDXKBXLOXLSVMTXLXMOVNTZRVO
VOWDVOVOVPVPWEVQVRXNROOVSVTWOYCYBYEXNOWATXOXPOOVSWBWQXQBOOVJWCWFWGEUCOW
HWITOWRWQCOBCUBCMIJWJKVKWKWBWOEWSCABWRDEFGHWRSWLWMWN $.
$}

$( The base set of ` Z/nZ ` is the same as the quotient ring it is based
on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV,
13-Jun-2019.) (Revised by AV, 3-Nov-2024.) $)
znbas2 $p |- ( N e. NN0 -> ( Base ` U ) = ( Base ` Y ) ) $=
( cbs baseid basendxnn cnx cple cfv plendxnbasendx necomi znbaslemnn ) AB
HCDEFGIJKLMKHMNOP $.

$( The additive structure of ` Z/nZ ` is the same as the quotient ring it
is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by
AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) $)
znadd $p |- ( N e. NN0 -> ( +g ` U ) = ( +g ` Y ) ) $=
( cplusg plusgid plusgndxnn cnx cple plendxnplusgndx necomi znbaslemnn
cfv ) ABHCDEFGIJKLPKHPMNO $.

$( The multiplicative structure of ` Z/nZ ` is the same as the quotient
ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.)
(Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) $)
znmul $p |- ( N e. NN0 -> ( .r ` U ) = ( .r ` Y ) ) $=
( cmulr mulridx cnx cfv cslot wceq cn wcel mulrslid simpri plendxnmulrndx
cple necomi znbaslemnn ) ABHCDEFGIHJHKZLMUBNOPQJSKUBRTUA $.
$}

${
znbas.s $e |- S = ( RSpan ` ZZring ) $.
znbas.y $e |- Y = ( Z/nZ ` N ) $.
znbas.r $e |- R = ( ZZring ~QG ( S ` { N } ) ) $.
$( The base set of ` Z/nZ ` structure. (Contributed by Mario Carneiro,
15-Jun-2015.) (Revised by AV, 13-Jun-2019.) $)
znbas $p |- ( N e. NN0 -> ( ZZ /. R ) = ( Base ` Y ) ) $=
( cn0 wcel cz czring cqus co cbs cfv cvv crg a1i zringring sylancr qusbas
cqs eqidd wceq zringbas csn crsp rspex ax-mp eqeltri snexg fvexg eqeltrid
cqg eqgex oveq2i znbas2 eqtrd ) CHIZJAUBKALMZNODNOUSAKUTJPQUSUTUCJKNOUDUS
UERUSAKCUFZBOZUNMZPGUSKQIZVBPIZVCPISUSBPIVAPIVEBKUGOZPEVDVFPISQKUHUIUJCHU
KVABPPULTVBKQPUOTUMVDUSSRUABUTCDEAVCKLGUPFUQUR $.
$}

${
$d x y N $. $d x y Y $.
zncrng.y $e |- Y = ( Z/nZ ` N ) $.
$( ` Z/nZ ` is a commutative ring. (Contributed by Mario Carneiro,
15-Jun-2015.) $)
zncrng $p |- ( N e. NN0 -> Y e. CRing ) $=
( vx vy cn0 wcel czring csn crsp cfv cqg co cqus ccrg cplusg oveqdr cmulr
eqid cv cz nn0z zncrng2 syl cbs eqidd znbas2 znadd znmul crngpropd mpbid
wa ) AFGZHHAIHJKZKLMNMZOGZBOGUMAUAGUPAUBUNUOAUNSZUOSZUCUDUMDEUOUEKZUOBUMU
SUFUNUOABUQURCUGUMDTUSGETUSGULZDEUOPKBPKUNUOABUQURCUHQUMUTDEUORKBRKUNUOAB
UQURCUIQUJUK $.
$}


Expand Down
86 changes: 86 additions & 0 deletions mmil.raw.html
Original file line number Diff line number Diff line change
Expand Up @@ -12155,6 +12155,92 @@
used in set.mm</td>
</tr>

<tr>
<td>znbaslem</td>
<td>~ znbaslemnn</td>
<td>adds ` ( E `` ndx ) e. NN ` hypothesis</td>
</tr>

<tr>
<td>znzrh</td>
<td><i>none</i></td>
<td>the set.mm proof uses zrhpropd</td>
</tr>

<tr>
<td>znzrh2</td>
<td><i>none</i></td>
<td>the set.mm proof uses znzrh</td>
</tr>

<tr>
<td>znzrhval</td>
<td><i>none</i></td>
<td>the set.mm proof uses znzrh2</td>
</tr>

<tr>
<td>znzrhfo</td>
<td><i>none</i></td>
<td>the set.mm proof uses znzrh2</td>
</tr>

<tr>
<td>zncyg</td>
<td><i>none</i></td>
<td>the set.mm proof uses CycGrp , iscyg , and znzrhfo</td>
</tr>

<tr>
<td>zndvds</td>
<td><i>none</i></td>
<td>the set.mm proof uses znzrhval</td>
</tr>

<tr>
<td>zndvds0</td>
<td><i>none</i></td>
<td>the set.mm proof uses zndvds</td>
</tr>

<tr>
<td>znf1o</td>
<td><i>none</i></td>
<td>the set.mm proof uses keephyp and znzrhfo</td>
</tr>

<tr>
<td>zzngim</td>
<td><i>none</i></td>
<td>the set.mm proof uses znzrhfo , znf1o , and
isgim</td>
</tr>

<tr>
<td>znle2</td>
<td><i>none</i></td>
<td>the set.mm proof uses znzrh</td>
</tr>

<tr>
<td>znleval , znleval2</td>
<td><i>none</i></td>
<td>the set.mm proof uses znle2</td>
</tr>

<tr>
<td>zntoslem , zntos</td>
<td><i>none</i></td>
<td>the set.mm proof uses keephyp , znleval2 , istos ,
and isposd</td>
</tr>

<tr>
<td>znhash</td>
<td><i>none</i></td>
<td>the set.mm proof uses znf1o</td>
</tr>

<tr>
<td>relt</td>
<td><i>none</i></td>
Expand Down