-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
168 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
from .NsgaIII import NsgaIII | ||
import math | ||
import numpy as np | ||
import random | ||
from time import time | ||
|
||
|
||
# X. -S. Yang and Suash Deb, "Cuckoo Search via Lévy flights," | ||
# 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, | ||
# 2009, pp. 210-214, doi: 10.1109/NABIC.2009.5393690. | ||
# Copyright (c) 2023 - 2024 Miller Cy Chan | ||
|
||
|
||
# Cuckoo Search Optimization (CSO) | ||
class Cso(NsgaIII): | ||
def __init__(self, configuration, numberOfCrossoverPoints=2, mutationSize=2, crossoverProbability=80, | ||
mutationProbability=3, maxIterations=5000): | ||
self._max_iterations = maxIterations | ||
self._maxRepeat = min(15, self._max_iterations // 2) | ||
super().__init__(configuration, numberOfCrossoverPoints, mutationSize, crossoverProbability, | ||
mutationProbability) | ||
|
||
# there should be at least 5 chromosomes in population | ||
if self._populationSize < 5: | ||
self._populationSize = 5 | ||
|
||
self._chromlen, self._pa, self._beta = 0, .25, 1.5 | ||
num = math.gamma(1 + self._beta) * math.sin(math.pi * self._beta / 2) | ||
den = math.gamma((1 + self._beta) / 2) * self._beta * (2 ** ((self._beta - 1) / 2)) | ||
self._σu, self._σv = (num / den) ** (1 / self._beta), 1 | ||
|
||
self._gBestScore = None | ||
self._current_position = [[]] | ||
|
||
|
||
def initialize(self, population): | ||
prototype = self._prototype | ||
|
||
populationSize = len(population) | ||
for i in range(populationSize): | ||
positions = [] | ||
# add new chromosome to population | ||
population[i] = prototype.makeNewFromPrototype(positions) | ||
if i < 1: | ||
self._chromlen = len(positions) | ||
self._current_position = np.zeros((populationSize, self._chromlen), dtype=float) | ||
|
||
|
||
def optimum(self, localVal, chromosome): | ||
localBest = self._prototype.makeEmptyFromPrototype() | ||
localBest.updatePositions(localVal) | ||
|
||
if localBest.dominates(chromosome): | ||
chromosome.updatePositions(localVal) | ||
return localVal | ||
|
||
positions = np.zeros(self._chromlen, dtype=float) | ||
chromosome.extractPositions(positions) | ||
return positions | ||
|
||
|
||
def updatePosition1(self, population): | ||
current_position = np.copy(self._current_position) | ||
populationSize = self._populationSize | ||
u, v = np.random.randn(populationSize) * self._σu, np.random.randn(populationSize) * self._σv | ||
S = u / (np.abs(v) ** (1 / self._beta)) | ||
|
||
for i in range(populationSize): | ||
if self._gBestScore is None: | ||
self._gBestScore = np.zeros(self._chromlen, dtype=float) | ||
population[i].extractPositions(self._gBestScore) | ||
else: | ||
self._gBestScore = self.optimum(self._gBestScore, population[i]) | ||
|
||
self._current_position[i] += np.random.normal(self._chromlen) * 0.01 * S[i] * (current_position[i] - self._gBestScore) | ||
self._current_position[i] = self.optimum(self._current_position[i], population[i]) | ||
|
||
|
||
def updatePosition2(self, population): | ||
current_position = np.copy(self._current_position) | ||
populationSize = self._populationSize | ||
for i in range(populationSize): | ||
d1, d2 = np.random.randint(0, 5, 2) | ||
changed = False | ||
for j in range(self._chromlen): | ||
r = np.random.rand() | ||
if r < self._pa: | ||
changed = True | ||
self._current_position[i, j] += random.random() * (current_position[d1, j] - current_position[d2, j]) | ||
|
||
if changed: | ||
self._current_position[i] = self.optimum(self._current_position[i], population[i]) | ||
|
||
|
||
def reform(self): | ||
random.seed(round(time() * 1000)) | ||
np.random.seed(int(time())) | ||
if self._crossoverProbability < 95: | ||
self._crossoverProbability += 1.0 | ||
elif self._pa < .5: | ||
self._pa += .01 | ||
|
||
|
||
def replacement(self, population): | ||
populationSize = self._populationSize | ||
self.updatePosition1(population) | ||
self.updatePosition2(population) | ||
|
||
for i in range(populationSize): | ||
chromosome = self._prototype.makeEmptyFromPrototype() | ||
chromosome.updatePositions(self._current_position[i]) | ||
population[i] = chromosome | ||
|
||
return super().replacement(population) | ||
|
||
|
||
# Starts and executes algorithm | ||
def run(self, maxRepeat=9999, minFitness=0.999): | ||
mutationSize, mutationProbability = self._mutationSize, self._mutationProbability | ||
populationSize = self._populationSize | ||
population = populationSize * [None] | ||
|
||
self.initialize(population) | ||
random.seed(round(time() * 1000)) | ||
np.random.seed(int(time())) | ||
pop = [population, None] | ||
|
||
# Current generation | ||
currentGeneration = 0 | ||
bestNotEnhance, lastBestFit = 0, 0.0 | ||
|
||
cur, next = 0, 1 | ||
while currentGeneration < self._max_iterations: | ||
if currentGeneration > 0: | ||
best = self.result | ||
print("Fitness:", "{:f}\t".format(best.fitness), "Generation:", currentGeneration, end="\r") | ||
|
||
# algorithm has reached criteria? | ||
if best.fitness > minFitness: | ||
break | ||
|
||
difference = abs(best.fitness - lastBestFit) | ||
if difference <= 0.0000001: | ||
bestNotEnhance += 1 | ||
else: | ||
lastBestFit = best.fitness | ||
bestNotEnhance = 0 | ||
|
||
if bestNotEnhance > (maxRepeat / 50): | ||
self.reform() | ||
|
||
# crossover | ||
offspring = self.crossing(pop[cur]) | ||
|
||
# mutation | ||
[i for i in map(self.mutation, offspring)] | ||
|
||
pop[cur].extend(offspring) | ||
|
||
# replacement | ||
pop[next] = self.replacement(pop[cur]) | ||
self._best = pop[next][0] if pop[next][0].dominates(pop[cur][0]) else pop[cur][0] | ||
|
||
cur, next = next, cur | ||
currentGeneration += 1 | ||
|
||
def __str__(self): | ||
return "Cuckoo Search Optimization (CSO)" |