A predictor of future behavior of a targeted criterion based on input/output profiles
Code Citation
- Forcasting future evolution of an uncontrolled variable from its past
- Design a Data-Driven Nonlinear Model Predicive Control
numpy, matplotlib
- The siso_predictor module
siso_predictor.py
- The
main.py
file - A utility
module generate_data.py
that is used to generate the data for the test of the module
sol = learn_model(
y=y,
U=U,
ydef=ydef,
N=100,
n_clusters=3,
nJump=1,
max_leaf_nodes=1200,
test_size=0.33,
validation_mode='all',
plot=True
)
where
y
the output time seriesU
the input time seriesydef
the map that defines the target indicator to predictN
the window widthn_clusters
the number of cluster used in the predictornJump
the jump size used when processing the datamax_leaf_nodes
the maximum number of leaf nodes in the Random Forest predictortest_size
the test size used in the learning validation split of the datavalidation_mode
the visualisation mode of the result ('all', 'learning', 'test')plot
whether to plot the results or not.