Mostly a learning exercise to reproduce GPT-2 and take a stab at code synthesis from scratch.
tiny.py
simplest model implementation using top level API.train.py
simplest training loop using lightning ⚡.basic.ipynb
end to end demo of usage.
- https://github.com/karpathy/minGPT
- https://www.kaggle.com/code/shashwatwork/mini-gpt-experiment-karpathy
- https://jaykmody.com/blog/gpt-from-scratch/
- https://www.youtube.com/watch?v=kCc8FmEb1nY
- https://www.youtube.com/watch?v=d7IRM40VMYM
- https://github.com/Lightning-AI/lightning-GPT
- https://openai.com/blog/introducing-chatgpt-and-whisper-apis
- https://blog.paperspace.com/sentence-embeddings-pytorch-lightning/
- https://sachinruk.github.io/blog/deep-learning/2022/09/25/grammar-correction-via-gpt2.html
- https://neptune.ai/blog/how-to-code-bert-using-pytorch-tutorial
- https://course.fast.ai/
-
Fix GPU integration
-
Check that VAE is properly encoding/decoding
-
Implement core GPT-2 architecture
- Extend this to the following:
- GPU integration
- LLVM compilation & training
- Text generation
- Complete loss fn
- Add generator function (512 tokens)
- Extend this to the following:
-
Make a python autocompletion engine
- Hook into VSCode as an extension
- Follow evaluation up with CodeGen
-
Enable resumable training w/ checkpoints
-
Integrate with https://pre-commit.com/
-
Investigate tooling like the following:
- Pair program with GPT
- Follow guides
- License taggging