This project aims to provide a fallback std::experimental::simd (Parallelism TS 2)
implementation with additional features. Not every user can rely on GCC 11+
and its standard library to be present on all target systems. Therefore, the
header vir/simd.h
provides a fallback implementation of the TS specification
that only implements the scalar
and fixed_size<N>
ABI tags. Thus, your code
can still compile and run correctly, even if it is missing the performance
gains a proper implementation provides.
- Installation
- Usage
- Options
- Additional Features
- Simple iota
simd
constants - Making
simd
conversions more convenient - Permutations
- SIMD execution policy
- Bitwise operators for floating-point
simd
- Conversion between
std::bitset
andsimd_mask
- vir::simd_resize and vir::simd_size_cast
- vir::simd_bit_cast
- Concepts
- simdize type transformation
- Benchmark support functions
constexpr_wrapper
: function arguments as constant expressions- Testing for the version of the vir::stdx::simd (vir-simd) library
- Debugging
- Simple iota
This is a header-only library. Installation is a simple copy of the headers to
wherever you want them. Per default make install
copies the headers into
/usr/local/include/vir/
.
Examples:
# installs to $HOME/.local/include/vir
make install prefix=~/.local
# installs to $HOME/src/myproject/3rdparty/vir
make install includedir=~/src/myproject/3rdparty
#include <vir/simd.h>
namespace stdx = vir::stdx;
using floatv = stdx::native_simd<float>;
// ...
The vir/simd.h
header will include <experimental/simd>
if it is available,
so you don't have to add any buildsystem support. It should just work.
-
VIR_SIMD_TS_DROPIN
: Define the macroVIR_SIMD_TS_DROPIN
before including<vir/simd.h>
to define everything in the namespace specified in the Parallelism TS 2 (namelystd::experimental::parallelism_v2
). -
VIR_DISABLE_STDX_SIMD
: Do not include<experimental/simd>
even if it is available. This allows compiling your code with the<vir/simd.h>
implementation unconditionally. This is useful for testing.
The TS curiously forgot to add simd_cast
and static_simd_cast
overloads for
simd_mask
. With vir::stdx::(static_)simd_cast
, casts will also work for
simd_mask
. This does not require any additional includes.
Requires Concepts (C++20).
#include <vir/simd_iota.h>
constexpr auto a = vir::iota_v<stdx::simd<float>> * 3; // 0, 3, 6, 9, ...
The variable template vir::iota_v<T>
can be instantiated with arithmetic
types, array types (std::array
and C-arrays), and simd
types. In all cases,
the elements of the variable will be initialized to 0, 1, 2, 3, 4, ...
,
depending on the number of elements in T
. For arithmetic types
vir::iota_v<T>
is always just 0
.
Requires Concepts (C++20).
The TS is way too strict about conversions, requiring verbose
std::experimental::static_simd_cast<T>(x)
instead of a concise T(x)
or
static_cast<T>(x)
. (std::simd
in C++26 will fix this.)
vir::cvt(x)
provides a tool to make x
implicitly convertible into whatever
the expression wants in order to be well-formed. This only works, if there is
an unambiguous type that is required.
#include <vir/simd_cvt.h>
using floatv = stdx::native_simd<float>;
using intv = stdx::rebind_simd_t<int, floatv>;
void f(intv x) {
using vir::cvt;
// the floatv constructor and intv assignment operator clearly determine the
// destination type:
x = cvt(10 * sin(floatv(cvt(x))));
// without vir::cvt, one would have write:
x = stdx::static_simd_cast<intv>(10 * sin(stdx::static_simd_cast<floatv>(x)));
// probably don't do this too often:
auto y = cvt(x); // y is a const-ref to x, but so much more convertible
// y is of type cvt<intv>
}
Note that vir::cvt
also works for simd_mask
and non-simd
types. Thus,
cvt
becomes an important building block for writing "simd
-generic" code
(i.e. well-formed for T
and simd<T>
).
Permutations (paper)
Requires Concepts (C++20).
#include <vir/simd_permute.h>
// v = {0, 1, 2, 3} -> {1, 0, 3, 2}
vir::simd_permute(v, vir::simd_permutations::swap_neighbors);
// v = {1, 2, 3, 4} -> {2, 2, 2, 2}
vir::simd_permute(v, [](unsigned) { return 1; });
// v = {1, 2, 3, 4} -> {3, 3, 3, 3}
vir::simd_permute(v, [](unsigned) { return -2; });
The following permutations are pre-defined:
-
vir::simd_permutations::duplicate_even
: copy values at even indices to neighboring odd position -
vir::simd_permutations::duplicate_odd
: copy values at odd indices to neighboring even position -
vir::simd_permutations::swap_neighbors<N>
: swapN
consecutive values with the followingN
consecutive values -
vir::simd_permutations::broadcast<Idx>
: copy the value at indexIdx
to all other values -
vir::simd_permutations::broadcast_first
: alias forbroadcast<0>
-
vir::simd_permutations::broadcast_last
: alias forbroadcast<-1>
-
vir::simd_permutations::reverse
: reverse the order of all values -
vir::simd_permutations::rotate<Offset>
: positiveOffset
rotates values to the left, negativeOffset
rotates values to the right (i.e.rotate<Offset>
moves values from index(i + Offset) % size
toi
) -
vir::simd_permutations::shift<Offset>
: positiveOffset
shifts values to the left, negativeOffset
shifts values to the right; shifting in zeros.
A vir::simd_permute(x, idx_perm)
overload, where x
is of vectorizable
type, is also included, facilitating generic code.
A special permutation vir::simd_shift_in<N>(x, ...)
shifts by N elements
shifting in elements from additional simd
objects passed via the pack.
Example:
// v = {1, 2, 3, 4}, w = {5, 6, 7, 8} -> {2, 3, 4, 5}
vir::simd_shift_in<1>(v, w);
SIMD execution policy (P0350)
Requires Concepts (C++20).
Adds an execution policy vir::execution::simd
. The execution policy can be
used with the algorithms implemented in the vir
namespace. These algorithms
are additionally overloaded in the std
namespace.
At this point, the implementation of the execution policy requires contiguous ranges / iterators.
std::for_each
/vir::for_each
std::count_if
/vir::count_if
std::transform
/vir::transform
std::transform_reduce
/vir::transform_reduce
std::reduce
/vir::reduce
#include <vir/simd_execution.h>
void increment_all(std::vector<float> data) {
std::for_each(vir::execution::simd, data.begin(), data.end(),
[](auto& v) {
v += 1.f;
});
}
// or
void increment_all(std::vector<float> data) {
vir::for_each(vir::execution::simd, data,
[](auto& v) {
v += 1.f;
});
}
The vir::execution::simd
execution policy supports a few settings modifying
its behavior:
-
vir::execution::simd.prefer_size<N>()
: Start with chunking the range into parts ofN
elements, calling the user-supplied function(s) with objects of typeresize_simd_t<N, simd<T>>
. -
vir::execution::simd.unroll_by<M>()
: Iterate over the range in chunks ofsimd::size() * M
instead of justsimd::size()
. The algorithm will executeM
loads (or stores) together before/after calling the user-supplied function(s). The user-supplied function may be called withM
simd
objects instead of onesimd
object. Note that prologue and epilogue will typically still call the user-supplied function with a singlesimd
object. Algorithms likestd::count_if
require a return value from the user-supplied function and therefore still call the function with a singlesimd
(to avoid the need for returning anarray
ortuple
ofsimd_mask
). Such algorithms will still make use of unrolling inside their implementation. -
vir::execution::simd.assume_matching_size()
: Add a precondition to the algorithm, that the given range size is a multiple of the SIMD width (but not the SIMD width multiplied by the above unroll factor). This modifier is only valid without prologue (the following two modifiers). The algorithm consequently does not implement an epilogue and all given callables are called with a single simd type (same width and ABI tag). This can reduce code size significantly. -
vir::execution::simd.prefer_aligned()
: Unconditionally iterate using smaller chunks, until the main iteration can load (and store) chunks from/to aligned addresses. This can be more efficient if the range is large, avoiding cache-line splits. (e.g. with AVX-512, unaligned iteration leads to cache-line splits on every iteration; with AVX on every second iteration) -
vir::execution::simd.auto_prologue()
(still testing its viability, may be removed): Determine from run-time information (i.e. add a branch) whether a prologue for alignment of the main chunked iteration might be more efficient.
#include <vir/simd_float_ops.h>
using namespace vir::simd_float_ops;
Then the &
, |
, and ^
binary operators can be used with objects of type
simd<
floating-point, A>
.
#include <vir/simd_bitset.h>
vir::stdx::simd_mask<int> k;
std::bitset b = vir::to_bitset(k);
vir::stdx::simd_mask k2 = vir::to_simd_mask<float>;
There are two overloads of vir::to_simd_mask
:
to_simd_mask<T, A>(bitset<simd_size_v<T, A>>)
and
to_simd_mask<T, N>(bitset<N>)
The header
#include <vir/simd_resize.h>
declares the functions
-
vir::simd_resize<N>(simd)
, -
vir::simd_resize<N>(simd_mask)
, -
vir::simd_size_cast<V>(simd)
, and -
vir::simd_size_cast<M>(simd_mask)
.
These functions can resize a given simd
or simd_mask
object. If the return
type requires more elements than the input parameter, the new elements are
default-initialized and appended at the end. Both functions do not allow a
change of the value_type
. However, implicit conversions can happen on
parameter passing to simd_size_cast
.
The header
#include <vir/simd_bit.h>
declares the function vir::simd_bit_cast<To>(from)
. This function serves the
same purpose as std::bit_cast
but additionally works in cases where a simd
type is not trivially copyable.
Requires Concepts (C++20).
The header
#include <vir/simd_concepts.h>
defines the following concepts:
-
vir::arithmetic<T>
: Whatstd::arithmetic<T>
should be: satisfied ifT
is an arithmetic type (as specified by the C++ core language). -
vir::vectorizable<T>
: Satisfied ifT
is a valid element type forstdx::simd
andstdx::simd_mask
. -
vir::simd_abi_tag<T>
: Satisfied ifT
is a valid ABI tag forstdx::simd
andstdx::simd_mask
. -
vir::any_simd<V>
: Satisfied ifV
is a specialization ofstdx::simd<T, Abi>
and the typesT
andAbi
satisfyvir::vectorizable<T>
andvir::simd_abi_tag<Abi>
. -
vir::any_simd_mask<V>
: Analogue tovir::any_simd<V>
forstdx::simd_mask
instead ofstdx::simd
. -
vir::typed_simd<V, T>
: Satisfied ifvir::any_simd<V>
andT
is the element type ofV
. -
vir::sized_simd<V, Width>
: Satisfied ifvir::any_simd<V>
andWidth
is the width ofV
. -
vir::sized_simd_mask<V, Width>
: Analogue tovir::sized_simd<V, Width>
forstdx::simd_mask
instead ofstdx::simd
.
Requires Concepts (C++20).
The header
#include <vir/simdize.h>
defines the following types and constants:
-
vir::simdize<T, N>
:N
is optional. Type alias for asimd
orvir::simd_tuple
type determined from the typeT
.-
If
vir::vectorizable<T>
is satisfied, thenstdx::simd<T, Abi>
is produced.Abi
is determined fromN
and will besimd_abi::native<T>
ifN
was omitted. -
If
T
is astd::tuple
or aggregate that can be reflected, then a specialization ofvir::simd_tuple
is produced. IfT
is a template specialization (without NTTPs), the metafunction tries vectorization via applyingsimdize
to all template arguments. If this doesn't yield the same data structure layout as member-only vectorization, then the type behaves similar to astd::tuple
with additional API to make the type similar tostdx::simd
(see below). This specialization will be derived fromstd::tuple
and the tuple elements will either bevir::simd_tuple
orstdx::simd
types.vir::simdize
is applied recursively to thestd::tuple
/aggregate data members. -
Otherwise,
T
cannot be simdized (e.g. void, no data members,std::tuple<>
) then no transformation is applied andsimdize<T>
is an alias forT
. -
If
N
was omitted, the resulting width of allsimd
types in the resulting type will match the largestnative_simd
width.
Example:
vir::simdize<std::tuple<double, short>>
produces a tuple with the element typesstdx::rebind_simd_t<double, stdx::native_simd<short>>
andstdx::native_simd<short>
. -
-
vir::simd_tuple<reflectable_struct T, size_t N>
: Don't use this class template directly. Letvir::simdize
instantiate specializations of this class template.vir::simd_tuple
mostly behaves like astd::tuple
and adds the following interface on top ofstd::tuple
:-
value_type
-
mask_type
-
size
-
tuple-like constructors
-
broadcast and/or conversion constructors
-
load constructor
-
as_tuple()
: Returns the data members as astd::tuple
. -
operator[](size_t)
: Copy of a singleT
stored in thesimd_tuple
. This is not a cheap operation because there are noT
objects stored in thesimd_tuple
. -
copy_from(std::contiguous_iterator)
: 🚧 unoptimized load from a contiguous array of struct (e.g.std::vector<T>
). -
copy_to(std::contiguous_iterator)
: 🚧 unoptimized store to a contiguous array of struct.
-
-
vir::simd_tuple<vectorizable_struct_template T, size_t N>
: TODO -
vir::get<I>(simd_tuple)
: Access to theI
-th data member (asimd
). -
vir::simdize_size<T>
,vir::simdize_size_v<T>
Requires Concepts (C++20) and GNU compatible inline-asm.
The header
#include <vir/simd_benchmarking.h>
defines the following functions:
-
vir::fake_modify(...)
: Let the compiler assume that all arguments passed to this functions are modified. This inhibits constant propagation, hoisting of code sections, and dead-code elimination. -
vir::fake_read(...)
: Let the compiler assume that all arguments passed to this function are read (in the cheapest manner). This inhibits dead-code elimination leading up to the results passed to this function.
The header
#include <vir/constexpr_wrapper.h>
defines the following tools:
-
vir::constexpr_value
(concept): Satisfied by any type with a static::value
member that can be used in a constant expression. -
vir::constexpr_wrapper<auto>
(class template): A type storing the value of its NTTP (non-type template parameter) and overloading all operators to return anotherconstexpr_wrapper
.constexpr_wrapper
objects are implicitly convertible to their value type (aconstexpr_wrapper
automatically unwraps its constant expression). -
vir::cw<auto>
(variable template): Shorthand for producingconstexpr_wrapper
objects with the given value. -
vir::literals
(namespace with_cw
UDL): Shorthand for producingconstexpr_wrapper
objects of the integer literal in front of the_cw
suffix. The type will be deduced automatically from the value of the literal to be the smallest signed integral type, or if the value is larger,unsigned long long
. If the value is too large for anunsigned long long
, the program is ill-formed.
constexpr_wrapper
may appear unrelated to simd
. However, it is an important
tool used in many places in the implementation and on interfaces of vir-simd
tools. vir::constexpr_wrapper
is very similar to std::integral_constant
,
which is used in the simd
TS interface for generator constructors.
#include <vir/constexpr_wrapper.h>
auto f(vir::constexpr_value auto N)
{
std::array<int, N> x = {};
return x;
}
std::array a = f(vir::cw<4>); // array<int, 4>
using namespace vir::literals;
std::array b = f(10_cw); // array<int, 10>
This example cannot work with a signature constexpr auto f(int n)
(or
consteval
) because n
will never be considered a constant expression in the
body of the function.
The header
#include <vir/simd_version.h>
(which is also included from <vir/simd.h>
) defines the type and constant
namespace vir
{
struct simd_version_t { int major, minor, patchlevel; };
constexpr simd_version_t simd_version;
}
in addition to the macros VIR_SIMD_VERSION
, VIR_SIMD_VERSION_MAJOR
,
VIR_SIMD_VERSION_MINOR
, and VIR_SIMD_VERSION_PATCHLEVEL
.
simd_version_t
implements all comparison operators, allowing e.g.
static_assert(vir::simd_version >= vir::simd_version_t{0,4,0});
-
An increment of the major version number implies a breaking change.
-
An increment of the minor version number implies new features without breaking changes.
-
An increment of the patchlevel is used for bug fixes.
-
A value
>= 100
for minor or patchlevel numbers is reserved for development and alpha/beta releases.
Compile with -D _GLIBCXX_DEBUG_UB
to get runtime checks for undefined
behavior in the simd
implementation(s). Otherwise, -fsanitize=undefined
without the macro definition will also find the problems, but without
additional error message.
Preconditions in the vir::stdx::simd implementation and extensions are
controlled via the -D VIR_CHECK_PRECONDITIONS=N
macro, which defaults to 3
.
Compile-time diagnostics are only possible if the compiler's optimizer can
detect the precondition failure. If you get a bogus compile-time failure, you
need to introduce the necessary assumption into your calling function, which is
typically a missing precondition check in your function.
Option | at compile-time | at run-time |
---|---|---|
-DVIR_CHECK_PRECONDITIONS=0 |
warning | invoke UB/unreachable |
-DVIR_CHECK_PRECONDITIONS=1 |
error | invoke UB/unreachable |
-DVIR_CHECK_PRECONDITIONS=2 |
warning | trap |
-DVIR_CHECK_PRECONDITIONS=3 |
error | trap |
-DVIR_CHECK_PRECONDITIONS=4 |
warning | print error and abort |
-DVIR_CHECK_PRECONDITIONS=5 |
error | print error and abort |