Fluent GraphQL is a JavaScript GraphQL client.
The GraphQL document and data handling of the response is expressed through a single fluent API.
Fluent GraphQL's approach uses a single fluent API to write GraphQL queries, response processing and cache management, making it easier and more intuitive for developers to work with GraphQL.
const document =
Document
.query()
.entity('user')
.scalar('name')
.scalar('age', Number)._._
.makeExecutable();
const data = await document.execute({});
- Watch for data updates
- Subscriptions using WebSockets
- Compose queries from existing queries
- Multiple fetch strategies
- Trivial data transformations
- TypeScript support
- Cache refresh (polling)
- Cache clearing (free memory)
In most other frameworks, GraphQL queries are typically written as strings:
const query = `
query {
user {
name
age
services {
name
duration
}
}
}
`
However, this approach does not provide information on how to handle the server response data.
- How do we transform the
age
andduration
fields into integers? - Should we replace the existing cached
services
or add to the list? - If this were a mutation, is the user to be deleted or updated?
- And so on.
Those frameworks would offer APIs that allow developers to specify how to transform data, update the cache, and perform other actions through various framework components.
Fluent GraphQL takes a different approach by providing a single fluent API that allows developers to write the GraphQL query, specify all data transformations, and handle caching, all in one go.
To execute requests using Fluent GraphQL, developers must instantiate an HTTP client and, if needed, a WebSocket client:
import { Client } from 'fluent-graphql';
const httpUrl = 'http://myapp.localhost:4000/api';
const wsUrl = 'ws://myapp.localhost:4000/api/ws';
export default new Client({
http: {
url: httpUrl,
credentials: 'include'
},
ws: {
url: wsUrl
}
});
The Client
constructor receives an object containing an http
property and ws
property to configure the HTTP client and WebSocket client, respectively.
Internally HTTP requests are executed by the ky library, while WebSocket requests are handled by the graphql-ws library.
The http
object must contain a url
property specifying the URL of the API, as well as any settings to be applied to the request used by the Fetch API:
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch#supplying_request_options
The ws
object must also contain the url
property, as well as any other properties required by the createClient
function of graphql-ws
:
https://github.com/enisdenjo/graphql-ws/blob/master/docs/modules/client.md
Developers can also use a Promise as the client, which can be particularly helpful when working with CSRF tokens.
Advanced example handling CSRF tokens
import { Client } from 'fluent-graphql';
interface ClientURLs {
httpUrl: string;
wsUrl: string;
csrfUrl: string;
}
let csrfTokenPromise: Promise<string>;
export default function createClient({ httpUrl, wsUrl, csrfUrl }: ClientURLs) {
return async () => {
if (!csrfTokenPromise) {
csrfTokenPromise = fetchCsrfToken(csrfUrl);
}
const csrfToken = await csrfTokenPromise;
wsUrl = `${wsUrl}${csrfToken}`;
return new Client({
http: {
url: httpUrl,
credentials: 'include',
headers: { 'x-csrf-token': csrfToken }
},
ws: {
url: wsUrl
}
});
};
}
async function fetchCsrfToken(csrfUrl: string) {
const csrfTokenResponse = await fetch(csrfUrl, { credentials: 'include' });
return await csrfTokenResponse.text();
}
To create a Document
instance, call the static query
, mutation
, or subscription
function on the Document
class, passing the operation name as an argument (which is optional for queries).
Document
.query('operationName')
Document
.mutation('operationName')
Document
.subscription('operationName')
While the return line and indentation above may seem superfluous, they are actually important for improving the readability of the document graph when working with a fluent API that involves nested structures.
const document =
Document
.query()
.entity('user')
.scalar('name')
.scalar('age', Number)
.entitySet('services')
.scalar('name')
.scalar('duration', Number)._._
.entity('organization')
.scalar('name')
.entitySet('locations')
.scalar('name')
.embed('address')
.scalar('city')
.scalar('street')._._._._
.makeExecutable();
Once we have a Document instance, we can use the following methods to build our GraphQL document:
entity(name)
: an object containingid
and__typename
.entitySet(name)
: a list of objects containingid
and__typename
.scalar(name, transformer)
: a string value that can be converted using thetransformer
callback.embed(name)
: an object containing only scalars or nested embeds, but no entities.embedList(name)
: a list of embeds.union(name)
: a union which resolves to an entity or an object with a__typename
.unionSet(name)
: a list of unions.interface(name)
: an interface which resolves to an entity.interfaceSet(name)
: a list of interfaces.onEntity(typename)
: used in a union or interface to discriminate by type.onTypedObject(typename)
: used in a union to discriminate by type.
The character _
(underscore) character is a reference to the parent object. It allows us to navigate back to the parent level and continue building the document graph from there.
const document =
Document
.query('UserList')
.variableDefinitions({ organizationId: 'ID!' })
.entity('users')
.useVariables({ organizationId: 'organizationId' })
.scalar('name')._._
.makeExecutable();
const data = await document.execute({ organizationId: 1 });
const data = await document.execute({}); // if the query doesn't utilize any variable
const data = await document.execute({ foo: 1 });
function subscriber(refreshedData) {
data = refreshedData;
}
const unsubscriber = document.subscribe({ foo: 1 }, subscriber);
onCleanup(unsubscriber); // provided that the framework component includes a lifecycle callback such as onCleanup, onDestroy, etc.
Query caches are updated automatically upon fetching new data. However, there are situations where we need to provide explicit instructions on how to update the caches held by our queries. The following functions provide a way to specify the updates that should be made to the query caches, based on the new data fetched from the server:
The delete
function allows us to delete an entity from all caches:
Document
.mutation('DeleteUser')
.entity('user')
.delete()._._
.makeExecutable();
The deleteElements
function allows us to delete a list of entities from all caches:
Document
.mutation('DeleteUsers')
.entitySet('users')
.deleteElements()._._
.makeExecutable();
The removeElements
function allows us to remove entities from a specific array in all caches:
Document
.mutation('RemoveUsersFromOrg')
.entity('organization')
.entitySet('users')
.removeElements()._._._
.makeExecutable();
The overrideElements
function allows us to replace entities from a specific array in all caches:
Document
.query('OrgUsers')
.entity('organization')
.entitySet('users')
.overrideElements()._._._
.makeExecutable();
addEntity
allows to add an entity into a specific array:
Document
.query('OrgUsers')
.variableDefinitions({ orgId: 'ID!' })
.entity('organization')
.entitySet('users')
.useVariables({ orgId: 'orgId' })
.addEntity({
User: (user, { orgId }, _organization) => user.orgId === org.id
})._._._
.makeExecutable();
replaceEntity
allows to replace a nested entity:
Document
.query('OrgUsers')
.variableDefinitions({ orgId: 'ID!' })
.entity('organization')
.entity('location')
.useVariables({ orgId: 'orgId' })
.replaceEntity({
Location: (location, { orgId }, _organization) => location.orgId === org.id
})._._._
.makeExecutable();
const fetchAccount = async (accountId, variables) => {
const data = await otherDocument.execute(variables);
return data.accounts.find(({ id }) => id === accountId);
};
Document
.query()
.entity('user')
.entity('account')
.deriveFromReference('accountId', fetchAccount)._._._
.makeExecutable();
const fetchAccount = async (variables) => {
const data = await otherDocument.execute(variables);
return data.account;
};
Document
.query()
.entity('user')
.entity('account')
.deriveFrom(fetchAccount)._._._
.makeExecutable();
Document
.query()
.viewer('me')
.entity('articles')
.scalar('title')._._._
.makeExecutable();
Document
.query()
.viewer('me')
.entity('articles')
.scalar('title')._._._
.clearAfter(Temporal.Duration.from({ days: 1 }))
.pollAfter(Temporal.Duration.from({ hours: 1 }));
Unsubscribe all the queries of a document instance from incoming network data:
documentInstance.clear();
Here are some utility functions that are useful for development purposes.
When developing and running the app locally, network requests tend to execute almost instantaneously. However, in order to simulate a network delay and have a better understanding of the app's behavior under more realistic or poor network conditions, you can use the static function simulateNetworkDelayGlobally(min, max)
. This function allows you to set a minimum and maximum delay time, which will be randomly applied to network requests throughout the app. This can be useful for testing UI spinners and other app behavior that is dependent on network response times.
Document.simulateNetworkDelayGlobally(1000, 3000);
The code above adds a delay of a random duration between between 1 and 3 seconds to every network request, simulating network latency.
Example using Vite:
if (import.meta.env.DEV) {
Document.simulateNetworkDelayGlobally(1000, 3000);
}
You may also specify the delay for a specific document, which overrides any global configured delay for this document:
Document.simulateNetworkDelay(1000, 3000);
fql.document(OperationType.Query, 'operationName');
fql
.query('operationName')
fql
.mutation('operationName')
fql
.subscription('operationName')
documentInstance.simulateNetworkResponse(data);
Example:
fql
.query()
.viewer('me')
.entitySet('organizations')
.scalar('name')._._._
.makeExecutable()
.transformResponse(({ me: { organizations } }) => organizations)
.simulateNetworkResponse({
me: {
organizations: [
{
__typename: 'Organization',
name: 'Foo',
id: '32208520-6518-487f-a0ec-a1e2fb74f209'
}
]
}
});
fql.setLogLevel('verbose');
// possible values are verbose, debug, info, warn, none (disable)
fql.logStatusQueries();
fql.logConsolidatedCaches();
-
The library assumes that IDs are unique globally, therefore, it is recommended to use universally unique identifiers (UUIDs) to ensure uniqueness.
-
Lists of entities are treated as sets, which means that they cannot contain duplicates. Currently, the library does not support arrays that hold duplicated entities. However, support for such arrays may be added in the future.
You can get fluent-graphql
via npm.
npm install fluent-graphql