Skip to content

Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Notifications You must be signed in to change notification settings

mathiasibsen/Reverse_Engineering_GMs

 
 

Repository files navigation

Reverse_Engineering_GMs

Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images".

The paper and supplementary can be found at https://arxiv.org/abs/2106.07873

alt text

Prerequisites

  • PyTorch 1.5.0
  • Numpy 1.14.2
  • Scikit-learn 0.22.2

Getting Started

Datasets

For reverse enginnering:

For deepfake detection:

  • Download the CelebA/LSUN dataset

For image_attribution:

  • Generate 110,000 images for four different GAN models as specified in https://github.com/ningyu1991/GANFingerprints/
  • For real images, use 110,000 of CelebA dataset.
  • For training: we used 100,000 images and remaining 10,000 for testing.

Training

  • Provide the train and test path in respective codes as sepecified below.
  • Provide the model path to resume training
  • Run the code

For reverse engineering, run:

python reverse_eng.py

For deepfake detection, run:

python deepfake_detection.py

For image attribution, run:

python image_attribution.py

Testing using pre-trained models

For reverse engineering, run:

python reverse_eng_test.py

For deepfake detection, run:

python deepfake_detection_test.py

For image attribution, run:

python image_attribution_test.py

If you would like to use our work, please cite:

@misc{asnani2021reverse,
      title={Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images}, 
      author={Vishal Asnani and Xi Yin and Tal Hassner and Xiaoming Liu},
      year={2021},
      eprint={2106.07873},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%