Skip to content

Commit

Permalink
docs/src/index.md: Update docs.
Browse files Browse the repository at this point in the history
  • Loading branch information
mashu committed Oct 16, 2024
1 parent d957a76 commit ced35d6
Show file tree
Hide file tree
Showing 2 changed files with 15 additions and 17 deletions.
11 changes: 4 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,14 +32,11 @@ using LineageCollapse
df = load_data("path/to/your/data.tsv")
preprocessed_df = preprocess_data(df)

# Use default Hamming distance and Hierarchical clustering
result1 = process_lineages(preprocessed_df)
# Use default Normalized Hamming distance with Hierarchical clustering and CDR3 similarity cutoff of 0.2
result = process_lineages(preprocessed_df, clustering_method=HierarchicalClustering(0.2))

# Use Levenshtein distance with Hierarchical clustering
result2 = process_lineages(preprocessed_df, distance_metric=LevenshteinDistance())

# Use Hamming distance with Hierarchical clustering and custom cutoff ratio
result3 = process_lineages(preprocessed_df, clustering_method=HierarchicalClustering(0.2))
# Collapse
collapsed = combine(groupby(result, [:d_region, :lineage_id, :j_call_first, :v_call_first, :cdr3]), :cdr3 => length => :count)
```

## Input Requirements
Expand Down
21 changes: 11 additions & 10 deletions docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,20 +32,21 @@ df = load_data("path/to/your/airr_data.tsv.gz")
# Preprocess data
preprocessed_df = preprocess_data(df, min_d_region_length=3)

# Perform lineage collapsing using default Hamming distance and Hierarchical clustering
collapsed_df = process_lineages(preprocessed_df)
# Assign lineages using default length Normalized Hamming distance and Hierarchical clustering
result1 = process_lineages(preprocessed_df)

# Use Levenshtein distance with Hierarchical clustering
collapsed_df_lev = process_lineages(preprocessed_df,
distance_metric=LevenshteinDistance(),
# Assign lineages using length Normalized Hamming distance
# with Hierarchical clustering but different CDR3 similarity cutoff
result2 = process_lineages(preprocessed_df,
distance_metric=NormalizedHammingDistance(),
clustering_method=HierarchicalClustering(0.1))

# Adjust allele ratio and collapse results
collapsed_df_custom = process_lineages(preprocessed_df,
# Assign lineages using length Normalized Hamming distance
# with Hierarchical clustering but different CDR3 similarity cutoff
# with CDR3 allelic ratio cut-off to filter out singletons
result3 = process_lineages(preprocessed_df,
distance_metric=NormalizedHammingDistance(),
clustering_method=HierarchicalClustering(0.1),
cdr3_ratio=0.3,
collapse=true)
cdr3_ratio=0.3)

# Generate diagnostic plots (requires CairoMakie)
# using CairoMakie
Expand Down

0 comments on commit ced35d6

Please sign in to comment.