Skip to content

manan-monani/Payment-Fraud-Detection-Model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Defraudo - AI-Powered Fraud Detection System

📌 Overview

Defraudo is an AI-powered fraud detection system designed to analyze digital transactions in real-time and detect fraudulent activities. The system leverages machine learning for fraud detection, Node.js for backend processing, and React Native for the frontend.

🚀 Features

  • Real-time Fraud Detection using AI models.
  • Razorpay Payment Integration for seamless transactions.
  • Location-based Transaction Verification.
  • Device ID Tracking for user identification.
  • Secure Payment Verification using Razorpay Signature Validation.

🛠️ Tech Stack

  • Frontend: React Native
  • Backend: Node.js, Express.js
  • Database: MongoDB
  • Payment Gateway: Razorpay
  • Machine Learning: Python (For AI Model)

📂 Project Structure

Defraudo/
│── client/          # React Native Frontend
│── server/          # Node.js Backend
│── ml-model/        # Fraud Detection AI Model
│── README.md        # Project Documentation
│── .env             # Environment Variables
│── package.json     # Dependencies

📌 Installation & Setup

🔹 Prerequisites

  • Node.js (v16+ recommended)
  • MongoDB (Installed & Running)
  • Razorpay Account

🔹 Backend Setup

git clone https://github.com/your-username/defraudo.git
cd defraudo/server
npm install

🔹 Configure Environment Variables

Create a .env file inside the server/ directory and add:

PORT=7000
MONGO_URI=your_mongodb_connection_string
RAZORPAY_KEY_ID=your_razorpay_key_id
RAZORPAY_KEY_SECRET=your_razorpay_key_secret

🔹 Start the Server

npm start

🔹 Frontend Setup

cd ../client
npm install
npm start

📌 API Endpoints

🔹 Create Razorpay Order

Endpoint: POST /api/razorpay/order

{
  "amount": 5000
}

🔹 Verify Payment

Endpoint: POST /api/razorpay/verify

{
  "razorpay_order_id": "order_xyz",
  "razorpay_payment_id": "pay_xyz",
  "razorpay_signature": "generated_signature"
}

📌 Contributors

  • My self - Manan Monani
  • Team Member 1 - Nevil Dhinoja
  • Team Member 2 - Krishil Agrawal
  • Team Member 3 - Parthiv Panchal
  • Team Member 4 - Astha Makwana
  • Team Member 5 - Yashvi Bhadani

📌 License

This project is MIT Licensed. Feel free to use and modify it. 😊


Made with ❤️ by the Defraudo Team 🚀

Represented This at Indus University as Team Defraudo.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published