Multi-fidelity Bayesian Machine Learning for global optimization - data wrangling and postprocessing scripts
Core structure of the folder:
data/ # Data gathered from the experiment
data/raw/ # Raw data (BOSS output files)
data/processed/ # Pre-processed data (JSON files)
docs/ # Documentation of results
env/ # Virtual environment to process data & create plots
references/ # References related to the project
results/ # Results, including plots and tables
scripts/ # Scripts to process data and create plots
src/ # Functionalities used within the project folder
tests/ # Tests for the pre-processing
flowchart TD;
A[Raw Data - BOSS output files] -- scripts/preprocess/ --> B[Pre-processed Data ];
B -- scripts/parse/ --> C[Data of Interest];
C -- scripts/analyse/ --> D[Generate Plots];
C -- scripts/analyse/ --> E[Calculate Statistics];