Experimented with Retrieval Augmented Generation based on given data
An AI chatbot featuring conversational memory, designed to enable users to discuss their CSV, PDF, TXT data, Website page and YTB videos in a more intuitive manner. 🚀
For better understanding, see medium article 🖖 : Build a chat-bot over your CSV data
Follow these steps to set up and run the service locally :
- Python 3.9 or higher
- Git
- Ollama setup "ollama run mistral" (see https://dev.to/0xkoji/how-to-run-large-language-models-locally-on-a-windows-machine-using-wsl-and-ollama-55fd)
Clone the repository :
git clone https://github.com/ly2xxx/rag_chat_opensource_llm
Navigate to the project directory :
cd rag_chat_opensource_llm
Create a virtual environment :
python -m venv .venv
.\.venv\Scripts\activate
Install the required dependencies in the virtual environment :
pip install -r requirements.txt
Setup gpt-2 tokenizer manually for langchain ConversationalRetrievalChain :
Copy
models\models--gpt2
to
C:\Users\[windows-username]\.cache\huggingface\hub\models--gpt2
Launch the chat service locally :
streamlit run streamlit_app.py