Releases: lululxvi/deepxde
Releases · lululxvi/deepxde
DeepXDE v0.13.2
- Backend PyTorch supports PDE forward problems
API changes
- Refactor uncertainty via MC dropout as the callback
DropoutUncertainty
; remove "uncertainty" argument fromModel.train()
.
DeepXDE v0.13.1
DeepXDE supports PyTorch backend for function approximation.
Areas of improvement
- Backend TensorFlow supports auxiliary variables
New APIs
- Add
dde.config.set_default_float()
anddde.config.default_float()
DeepXDE v0.13.0
DeepXDE now supports two backends: TensorFlow 1.x (tensorflow.compat.v1
in TensorFlow 2.x) and TensorFlow 2.x. For how to select one, see Working with different backends.
Areas of improvement
- Many modules are refactored to better support multiple backends.
- Support skopt>=0.9
- Documentation improvements
API changes
- Rename
dde.data.Func
todde.data.Function
New APIs
- Add
Hypercube.random_boundary_points()
DeepXDE v0.12.0
This release is mainly about DeepONet.
API changes
- Rename
OpNN
toDeepONet
- Rename
OpDataSet
toTriple
New APIs
- Add
dde.__version__
- Add
data.TripleCartesianProd
,maps.DeepONetCartesianProd
, andmaps.FourierDeepONetCartesianProd
- Add new metric:
mean_l2_relative_error
Areas of improvement
- Bug fix: change 'sobol' to 'Sobol'
DeepXDE v0.11.2
Areas of improvement
- Add Multi-scale Fourier Feature Neural Networks:
MsFFN
andSTMsFFN
PDE
supports more sampling methods: LHS, Halton, HammersleyDeepONet
supports input_transform and output_transformPointSet
supports default valueHypercube.boundary_normal()
returns averaged normal for vertices- Speedup
Polygon.random_points()
DeepXDE v0.11.1
Areas of improvement
FNN
supports argumentsuse_bias
andkernel_constraint
, and layer normalization- Change L-BFGS option
gtol
from 1e-5 to 1e-8 - Improve
saveplot
New APIs
- Add a new Data
Constraint
- Add metric
mean_squared_error
DeepXDE v0.11.0
We stop the support of Python 2.7 from this release.
Areas of improvement
- Vectorize geometry related methods
PDE
supports resample PDE residual points via callbackPDEResidualResampler
- Implement
Polygon.boundary_normal()
New APIs
- Add multifidelity DeepONet
API changes
- Geometry-related methods (
inside
,on_boundary
,on_initial
,boundary_normal
,periodic_point
) now use the 2d input of shape N by d, not a 1d vector.
DeepXDE v0.10.0
Areas of improvement
PDE
supports excluded points- Add
PointSetBC
for training using exact solution. - Add
Hypersphere.boundary_normal()
- Add
Triangle.inside()
API changes
PDE
doesn't support numpy.arrayX
as the third parameter. To define pde with extra coefficients, usePDE(..., auxiliary_var_function=...)
, see an example at Lorenz_inverse_forced_Colab.ipynb.
DeepXDE v0.9.1
Areas of improvement
Model.predict()
supports PDE with two or three argumentsPDE
supports different loss functions for different errorsHypercube.uniform_points()
uses the same dx in each dimension
New APIs
- Add metric:
nanl2_relative_error
,zero
- Add callback:
Timer
DeepXDE v0.9.0
New module
- Add new module
dde.grad
to compute gradients viadde.grad.jacobian()
anddde.grad.hessian()
Areas of improvement
- Bug fix:
GeometryXTime.periodic_point()