Releases: lululxvi/deepxde
Releases · lululxvi/deepxde
DeepXDE v1.9.0
DeepXDE supports data-parallel training of PINN now.🎉🎉🎉
Areas of improvement
- Backend tensorflow.compat.v1: Support data-parallel training of PINN via Horovod in both weak and strong scaling modes
- Backend paddle: Some updates to support the new Paddle version
- Bug fix for Float16
New APIs
- Add
dde.config.set_parallel_scaling
to set parallel mode - Add
dde.config.set_hvd_opt_options
forhvd.DistributedOptimzer
DeepXDE v1.8.4
We stop the support of Python 3.7 from this release.
Areas of improvement
- If no backend is selected, automatically find an available backend.
DeepXDE v1.8.3
Areas of improvement
- Many improvements for backends:
- Display more information
- Verify if the backend is available/importable
- Add interactive installation of Paddle
- Backend PyTorch:
Model.restore
supports restoring model to a specified device - Use setuptools_scm for VCS versioning
New APIs
- Support new geometry
dde.geometry.Ellipse
DeepXDE v1.8.2
This release is used to test the automated release workflow.
DeepXDE v1.8.1
Areas of improvement
- Support float16
- Backend TensorFlow supports
Model.state_dict
- Migrate build config from setup.py to pyproject.toml
- Migrate CI from Travis to GitHub Actions
- Many examples and documentation improvements
DeepXDE v1.8.0
A lot of implementations for backend paddle! Feel free to use backend paddle.🎉🎉🎉
Areas of improvement
dde.nn.FNN
supports defining activation functions for each layerdde.geometry.PointCloud
supports boundary points and normals- Bug fix
New APIs
- Backend PyTorch: Support
dde.nn.DeepONet
DeepXDE v1.7.2
Areas of improvement
- Add
dde.icbc.PointSetOperatorBC
dde.callbacks.OperatorPredictor
can be used during training- Backend PyTorch:
dde.icbc.PointSetBC
supports multi-component outputs - Bug fix
DeepXDE v1.7.1
Areas of improvement
dde.data.TripleCartesianProd
anddde.data.QuadrupleCartesianProd
support mini-batch for both branch and trunk nets- Backend TensorFlow 1.x: L-BFGS dumps trainable variables and test loss
DeepXDE v1.7.0
Areas of improvement
dde.icbc.PointSetBC
supports mini-batch- Bug fix
New APIs
- Backend paddle: Support
dde.nn.DeepONet
anddde.nn.DeepONetCartesianProd
API changes
- Change
dde.callback.PDEResidualResampler
todde.callback.PDEPointResampler
DeepXDE v1.6.2
Areas of improvement
- Set Hammersley as the default point sampling for PINN
- Improve point sampling of
dde.geometry.GeometryXTime.random_points
dde.callback.ModelCheckpoint
supports monitoring test loss- PyTorch backend:
dde.nn.PODMIONet
anddde.nn.MIONetCartesianProd
support multiple merge operations