-
-
Notifications
You must be signed in to change notification settings - Fork 3.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add a simple vit flavor for a new bytedance paper that proposes to br…
…eak out of the traditional one residual stream architecture - "hyper-connections"
- Loading branch information
1 parent
56373c0
commit e7cba9b
Showing
3 changed files
with
245 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,233 @@ | ||
""" | ||
ViT + Hyper-Connections + Register Tokens | ||
https://arxiv.org/abs/2409.19606 | ||
""" | ||
|
||
import torch | ||
from torch import nn, tensor | ||
from torch.nn import Module, ModuleList | ||
|
||
from einops import rearrange, repeat, reduce, einsum, pack, unpack | ||
from einops.layers.torch import Rearrange | ||
|
||
# b - batch, h - heads, n - sequence, e - expansion rate / residual streams, d - feature dimension | ||
|
||
# helpers | ||
|
||
def pair(t): | ||
return t if isinstance(t, tuple) else (t, t) | ||
|
||
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32): | ||
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij") | ||
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb" | ||
omega = torch.arange(dim // 4) / (dim // 4 - 1) | ||
omega = 1.0 / (temperature ** omega) | ||
|
||
y = y.flatten()[:, None] * omega[None, :] | ||
x = x.flatten()[:, None] * omega[None, :] | ||
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1) | ||
return pe.type(dtype) | ||
|
||
# hyper connections | ||
|
||
class HyperConnection(Module): | ||
def __init__( | ||
self, | ||
dim, | ||
num_residual_streams, | ||
layer_index | ||
): | ||
""" Appendix J - Algorithm 2, Dynamic only """ | ||
super().__init__() | ||
|
||
self.norm = nn.LayerNorm(dim, bias = False) | ||
|
||
self.num_residual_streams = num_residual_streams | ||
self.layer_index = layer_index | ||
|
||
self.static_beta = nn.Parameter(torch.ones(num_residual_streams)) | ||
|
||
init_alpha0 = torch.zeros((num_residual_streams, 1)) | ||
init_alpha0[layer_index % num_residual_streams, 0] = 1. | ||
|
||
self.static_alpha = nn.Parameter(torch.cat([init_alpha0, torch.eye(num_residual_streams)], dim = 1)) | ||
|
||
self.dynamic_alpha_fn = nn.Parameter(torch.zeros(dim, num_residual_streams + 1)) | ||
self.dynamic_alpha_scale = nn.Parameter(tensor(1e-2)) | ||
self.dynamic_beta_fn = nn.Parameter(torch.zeros(dim)) | ||
self.dynamic_beta_scale = nn.Parameter(tensor(1e-2)) | ||
|
||
def width_connection(self, residuals): | ||
normed = self.norm(residuals) | ||
|
||
wc_weight = (normed @ self.dynamic_alpha_fn).tanh() | ||
dynamic_alpha = wc_weight * self.dynamic_alpha_scale | ||
alpha = dynamic_alpha + self.static_alpha | ||
|
||
dc_weight = (normed @ self.dynamic_beta_fn).tanh() | ||
dynamic_beta = dc_weight * self.dynamic_beta_scale | ||
beta = dynamic_beta + self.static_beta | ||
|
||
# width connection | ||
mix_h = einsum(alpha, residuals, '... e1 e2, ... e1 d -> ... e2 d') | ||
|
||
branch_input, residuals = mix_h[..., 0, :], mix_h[..., 1:, :] | ||
|
||
return branch_input, residuals, beta | ||
|
||
def depth_connection( | ||
self, | ||
branch_output, | ||
residuals, | ||
beta | ||
): | ||
return einsum(branch_output, beta, "b n d, b n e -> b n e d") + residuals | ||
|
||
# classes | ||
|
||
class FeedForward(Module): | ||
def __init__(self, dim, hidden_dim): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Linear(hidden_dim, dim), | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
class Attention(Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
self.heads = heads | ||
self.scale = dim_head ** -0.5 | ||
self.norm = nn.LayerNorm(dim) | ||
|
||
self.attend = nn.Softmax(dim = -1) | ||
|
||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | ||
self.to_out = nn.Linear(inner_dim, dim, bias = False) | ||
|
||
def forward(self, x): | ||
x = self.norm(x) | ||
|
||
qkv = self.to_qkv(x).chunk(3, dim = -1) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | ||
|
||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | ||
|
||
attn = self.attend(dots) | ||
|
||
out = torch.matmul(attn, v) | ||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
return self.to_out(out) | ||
|
||
class Transformer(Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, num_residual_streams): | ||
super().__init__() | ||
|
||
self.num_residual_streams = num_residual_streams | ||
|
||
self.norm = nn.LayerNorm(dim) | ||
self.layers = ModuleList([]) | ||
|
||
for layer_index in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
HyperConnection(dim, num_residual_streams, layer_index), | ||
Attention(dim, heads = heads, dim_head = dim_head), | ||
HyperConnection(dim, num_residual_streams, layer_index), | ||
FeedForward(dim, mlp_dim) | ||
])) | ||
|
||
def forward(self, x): | ||
|
||
x = repeat(x, 'b n d -> b n e d', e = self.num_residual_streams) | ||
|
||
for attn_hyper_conn, attn, ff_hyper_conn, ff in self.layers: | ||
|
||
x, attn_res, beta = attn_hyper_conn.width_connection(x) | ||
|
||
x = attn(x) | ||
|
||
x = attn_hyper_conn.depth_connection(x, attn_res, beta) | ||
|
||
x, ff_res, beta = ff_hyper_conn.width_connection(x) | ||
|
||
x = ff(x) | ||
|
||
x = ff_hyper_conn.depth_connection(x, ff_res, beta) | ||
|
||
x = reduce(x, 'b n e d -> b n d', 'sum') | ||
|
||
return self.norm(x) | ||
|
||
class SimpleViT(nn.Module): | ||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, num_residual_streams, num_register_tokens = 4, channels = 3, dim_head = 64): | ||
super().__init__() | ||
image_height, image_width = pair(image_size) | ||
patch_height, patch_width = pair(patch_size) | ||
|
||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | ||
|
||
patch_dim = channels * patch_height * patch_width | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width), | ||
nn.LayerNorm(patch_dim), | ||
nn.Linear(patch_dim, dim), | ||
nn.LayerNorm(dim), | ||
) | ||
|
||
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim)) | ||
|
||
self.pos_embedding = posemb_sincos_2d( | ||
h = image_height // patch_height, | ||
w = image_width // patch_width, | ||
dim = dim, | ||
) | ||
|
||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, num_residual_streams) | ||
|
||
self.pool = "mean" | ||
self.to_latent = nn.Identity() | ||
|
||
self.linear_head = nn.Linear(dim, num_classes) | ||
|
||
def forward(self, img): | ||
batch, device = img.shape[0], img.device | ||
|
||
x = self.to_patch_embedding(img) | ||
x += self.pos_embedding.to(x) | ||
|
||
r = repeat(self.register_tokens, 'n d -> b n d', b = batch) | ||
|
||
x, ps = pack([x, r], 'b * d') | ||
|
||
x = self.transformer(x) | ||
|
||
x, _ = unpack(x, ps, 'b * d') | ||
|
||
x = x.mean(dim = 1) | ||
|
||
x = self.to_latent(x) | ||
return self.linear_head(x) | ||
|
||
# main | ||
|
||
if __name__ == '__main__': | ||
vit = SimpleViT( | ||
num_classes = 1000, | ||
image_size = 256, | ||
patch_size = 8, | ||
dim = 1024, | ||
depth = 12, | ||
heads = 8, | ||
mlp_dim = 2048, | ||
num_residual_streams = 8 | ||
) | ||
|
||
images = torch.randn(3, 3, 256, 256) | ||
|
||
logits = vit(images) |