-
-
Notifications
You must be signed in to change notification settings - Fork 3.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
bed48b5
commit c6dff47
Showing
2 changed files
with
328 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,327 @@ | ||
from __future__ import annotations | ||
|
||
from typing import List | ||
from functools import partial | ||
|
||
import torch | ||
from torch import nn, Tensor | ||
import torch.nn.functional as F | ||
from torch.nn import Module, ModuleList | ||
from torch.nested import nested_tensor | ||
|
||
from einops import rearrange | ||
from einops.layers.torch import Rearrange | ||
|
||
# helpers | ||
|
||
def exists(val): | ||
return val is not None | ||
|
||
def default(val, d): | ||
return val if exists(val) else d | ||
|
||
def pair(t): | ||
return t if isinstance(t, tuple) else (t, t) | ||
|
||
def divisible_by(numer, denom): | ||
return (numer % denom) == 0 | ||
|
||
# feedforward | ||
|
||
def FeedForward(dim, hidden_dim, dropout = 0.): | ||
return nn.Sequential( | ||
nn.LayerNorm(dim, bias = False), | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Dropout(dropout), | ||
nn.Linear(hidden_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
|
||
class Attention(Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | ||
super().__init__() | ||
self.norm = nn.LayerNorm(dim, bias = False) | ||
|
||
dim_inner = heads * dim_head | ||
self.heads = heads | ||
self.dim_head = dim_head | ||
|
||
self.to_queries = nn.Linear(dim, dim_inner, bias = False) | ||
self.to_keys = nn.Linear(dim, dim_inner, bias = False) | ||
self.to_values = nn.Linear(dim, dim_inner, bias = False) | ||
|
||
# in the paper, they employ qk rmsnorm, a way to stabilize attention | ||
# will use layernorm in place of rmsnorm, which has been shown to work in certain papers. requires l2norm on non-ragged dimension to be supported in nested tensors | ||
|
||
self.query_norm = nn.LayerNorm(dim_head, bias = False) | ||
self.key_norm = nn.LayerNorm(dim_head, bias = False) | ||
|
||
self.dropout = dropout | ||
|
||
self.to_out = nn.Linear(dim_inner, dim, bias = False) | ||
|
||
def forward( | ||
self, | ||
x, | ||
context: Tensor | None = None | ||
): | ||
|
||
x = self.norm(x) | ||
|
||
# for attention pooling, one query pooling to entire sequence | ||
|
||
context = default(context, x) | ||
|
||
# queries, keys, values | ||
|
||
query = self.to_queries(x) | ||
key = self.to_keys(context) | ||
value = self.to_values(context) | ||
|
||
# split heads | ||
|
||
def split_heads(t): | ||
return t.unflatten(-1, (self.heads, self.dim_head)).transpose(1, 2).contiguous() | ||
|
||
query, key, value = map(split_heads, (query, key, value)) | ||
|
||
# qk norm for attention stability | ||
|
||
query = self.query_norm(query) | ||
key = self.key_norm(key) | ||
|
||
# attention | ||
|
||
out = F.scaled_dot_product_attention( | ||
query, key, value, | ||
dropout_p = self.dropout if self.training else 0. | ||
) | ||
|
||
# merge heads | ||
|
||
out = out.transpose(1, 2).flatten(-2) | ||
|
||
return self.to_out(out) | ||
|
||
class Transformer(Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): | ||
super().__init__() | ||
self.layers = ModuleList([]) | ||
|
||
for _ in range(depth): | ||
self.layers.append(ModuleList([ | ||
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), | ||
FeedForward(dim, mlp_dim, dropout = dropout) | ||
])) | ||
|
||
self.norm = nn.LayerNorm(dim, bias = False) | ||
|
||
def forward(self, x): | ||
|
||
for attn, ff in self.layers: | ||
x = attn(x) + x | ||
x = ff(x) + x | ||
|
||
return self.norm(x) | ||
|
||
class NaViT(Module): | ||
def __init__( | ||
self, | ||
*, | ||
image_size, | ||
max_frames, | ||
patch_size, | ||
frame_patch_size, | ||
num_classes, | ||
dim, | ||
depth, | ||
heads, | ||
mlp_dim, | ||
channels = 3, | ||
dim_head = 64, | ||
dropout = 0., | ||
emb_dropout = 0., | ||
token_dropout_prob: float | None = None | ||
): | ||
super().__init__() | ||
image_height, image_width = pair(image_size) | ||
|
||
# what percent of tokens to dropout | ||
# if int or float given, then assume constant dropout prob | ||
# otherwise accept a callback that in turn calculates dropout prob from height and width | ||
|
||
self.token_dropout_prob = token_dropout_prob | ||
|
||
# calculate patching related stuff | ||
|
||
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.' | ||
assert divisible_by(max_frames, frame_patch_size) | ||
|
||
patch_frame_dim, patch_height_dim, patch_width_dim = (max_frames // frame_patch_size), (image_height // patch_size), (image_width // patch_size) | ||
|
||
patch_dim = channels * (patch_size ** 2) * frame_patch_size | ||
|
||
self.channels = channels | ||
self.patch_size = patch_size | ||
self.to_patches = Rearrange('c (f pf) (h p1) (w p2) -> f h w (c p1 p2 pf)', p1 = patch_size, p2 = patch_size, pf = frame_patch_size) | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
nn.LayerNorm(patch_dim), | ||
nn.Linear(patch_dim, dim), | ||
nn.LayerNorm(dim), | ||
) | ||
|
||
self.pos_embed_frame = nn.Parameter(torch.randn(patch_frame_dim, dim)) | ||
self.pos_embed_height = nn.Parameter(torch.randn(patch_height_dim, dim)) | ||
self.pos_embed_width = nn.Parameter(torch.randn(patch_width_dim, dim)) | ||
|
||
self.dropout = nn.Dropout(emb_dropout) | ||
|
||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) | ||
|
||
# final attention pooling queries | ||
|
||
self.attn_pool_queries = nn.Parameter(torch.randn(dim)) | ||
self.attn_pool = Attention(dim = dim, dim_head = dim_head, heads = heads) | ||
|
||
# output to logits | ||
|
||
self.to_latent = nn.Identity() | ||
|
||
self.mlp_head = nn.Sequential( | ||
nn.LayerNorm(dim, bias = False), | ||
nn.Linear(dim, num_classes, bias = False) | ||
) | ||
|
||
@property | ||
def device(self): | ||
return next(self.parameters()).device | ||
|
||
def forward( | ||
self, | ||
volumes: List[Tensor], # different resolution images / CT scans | ||
): | ||
batch, device = len(images), self.device | ||
arange = partial(torch.arange, device = device) | ||
|
||
assert all([volume.ndim == 4 and volume.shape[0] == self.channels for volume in volumes]), f'all volumes must have {self.channels} channels and number of dimensions of {self.channels} (channels, frame, height, width)' | ||
|
||
all_patches = [self.to_patches(volume) for volume in volumes] | ||
|
||
# prepare factorized positional embedding height width indices | ||
|
||
positions = [] | ||
|
||
for patches in all_patches: | ||
patch_frame, patch_height, patch_width = patches.shape[:3] | ||
fhw_indices = torch.stack(torch.meshgrid((arange(patch_frame), arange(patch_height), arange(patch_width)), indexing = 'ij'), dim = -1) | ||
fhw_indices = rearrange(fhw_indices, 'f h w c -> (f h w) c') | ||
|
||
positions.append(fhw_indices) | ||
|
||
# need the sizes to compute token dropout + positional embedding | ||
|
||
tokens = [rearrange(patches, 'f h w d -> (f h w) d') for patches in all_patches] | ||
|
||
# handle token dropout | ||
|
||
seq_lens = torch.tensor([i.shape[0] for i in tokens], device = device) | ||
|
||
if self.training and self.token_dropout_prob > 0: | ||
|
||
keep_seq_lens = ((1. - self.token_dropout_prob) * seq_lens).int().clamp(min = 1) | ||
|
||
kept_tokens = [] | ||
kept_positions = [] | ||
|
||
for one_image_tokens, one_image_positions, seq_len, num_keep in zip(tokens, positions, seq_lens, keep_seq_lens): | ||
keep_indices = torch.randn((seq_len,), device = device).topk(num_keep, dim = -1).indices | ||
|
||
one_image_kept_tokens = one_image_tokens[keep_indices] | ||
one_image_kept_positions = one_image_positions[keep_indices] | ||
|
||
kept_tokens.append(one_image_kept_tokens) | ||
kept_positions.append(one_image_kept_positions) | ||
|
||
tokens, positions, seq_lens = kept_tokens, kept_positions, keep_seq_lens | ||
|
||
# add all height and width factorized positions | ||
|
||
|
||
frame_indices, height_indices, width_indices = torch.cat(positions).unbind(dim = -1) | ||
frame_embed, height_embed, width_embed = self.pos_embed_frame[frame_indices], self.pos_embed_height[height_indices], self.pos_embed_width[width_indices] | ||
|
||
pos_embed = frame_embed + height_embed + width_embed | ||
|
||
# use nested tensor for transformers and save on padding computation | ||
|
||
tokens = torch.cat(tokens) | ||
|
||
# linear projection to patch embeddings | ||
|
||
tokens = self.to_patch_embedding(tokens) | ||
|
||
# absolute positions | ||
|
||
tokens = tokens + pos_embed | ||
|
||
tokens = nested_tensor(tokens.split(seq_len.tolist()), layout = torch.jagged, device = device) | ||
|
||
# embedding dropout | ||
|
||
tokens = self.dropout(tokens) | ||
|
||
# transformer | ||
|
||
tokens = self.transformer(tokens) | ||
|
||
# attention pooling | ||
# will use a jagged tensor for queries, as SDPA requires all inputs to be jagged, or not | ||
|
||
attn_pool_queries = [rearrange(self.attn_pool_queries, '... -> 1 ...')] * batch | ||
|
||
attn_pool_queries = nested_tensor(attn_pool_queries, layout = torch.jagged) | ||
|
||
pooled = self.attn_pool(attn_pool_queries, tokens) | ||
|
||
# back to unjagged | ||
|
||
logits = torch.stack(pooled.unbind()) | ||
|
||
logits = rearrange(logits, 'b 1 d -> b d') | ||
|
||
logits = self.to_latent(logits) | ||
|
||
return self.mlp_head(logits) | ||
|
||
# quick test | ||
|
||
if __name__ == '__main__': | ||
|
||
# works for torch 2.2.2 | ||
|
||
v = NaViT( | ||
image_size = 256, | ||
max_frames = 8, | ||
patch_size = 32, | ||
frame_patch_size = 2, | ||
num_classes = 1000, | ||
dim = 1024, | ||
depth = 6, | ||
heads = 16, | ||
mlp_dim = 2048, | ||
dropout = 0., | ||
emb_dropout = 0., | ||
token_dropout_prob = 0.1 | ||
) | ||
|
||
# 5 volumetric data (videos or CT scans) of different resolutions - List[Tensor] | ||
|
||
images = [ | ||
torch.randn(3, 2, 256, 256), torch.randn(3, 8, 128, 128), | ||
torch.randn(3, 4, 128, 256), torch.randn(3, 2, 256, 128), | ||
torch.randn(3, 4, 64, 256) | ||
] | ||
|
||
assert v(images).shape == (5, 1000) |