Skip to content

Commit

Permalink
add lookup vit, cite, document later
Browse files Browse the repository at this point in the history
  • Loading branch information
lucidrains committed Jul 19, 2024
1 parent e3256d7 commit bd72b58
Show file tree
Hide file tree
Showing 2 changed files with 283 additions and 0 deletions.
16 changes: 16 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2072,4 +2072,20 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```

```bibtex
@inproceedings{Koner2024LookupViTCV,
title = {LookupViT: Compressing visual information to a limited number of tokens},
author = {Rajat Koner and Gagan Jain and Prateek Jain and Volker Tresp and Sujoy Paul},
year = {2024},
url = {https://api.semanticscholar.org/CorpusID:271244592}
}
```

```bibtex
@misc{Rubin2024,
author = {Ohad Rubin},
url = {https://medium.com/@ohadrubin/exploring-weight-decay-in-layer-normalization-challenges-and-a-reparameterization-solution-ad4d12c24950}
}
```

*I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.* — Claude Shannon
267 changes: 267 additions & 0 deletions vit_pytorch/look_vit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,267 @@
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Module, ModuleList

from einops import einsum, rearrange, repeat, reduce
from einops.layers.torch import Rearrange

# helpers

def exists(val):
return val is not None

def default(val, d):
return val if exists(val) else d

def divisible_by(num, den):
return (num % den) == 0

# simple vit sinusoidal pos emb

def posemb_sincos_2d(t, temperature = 10000):
h, w, d, device = *t.shape[1:], t.device
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
assert (d % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(d // 4, device = device) / (d // 4 - 1)
omega = temperature ** -omega

y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pos = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)

return pos.float()

# bias-less layernorm with unit offset trick (discovered by Ohad Rubin)

class LayerNorm(Module):
def __init__(self, dim):
super().__init__()
self.ln = nn.LayerNorm(dim, elementwise_affine = False)
self.gamma = nn.Parameter(torch.zeros(dim))

def forward(self, x):
normed = self.ln(x)
return normed * (self.gamma + 1)

# mlp

def MLP(dim, factor = 4, dropout = 0.):
hidden_dim = int(dim * factor)
return nn.Sequential(
LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)

# attention

class Attention(Module):
def __init__(
self,
dim,
heads = 8,
dim_head = 64,
dropout = 0.,
reuse_attention = False
):
super().__init__()
inner_dim = dim_head * heads

self.scale = dim_head ** -0.5
self.heads = heads
self.reuse_attention = reuse_attention

self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)

self.norm = LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)

self.to_q = nn.Linear(dim, inner_dim, bias = False) if not reuse_attention else None
self.to_k = nn.Linear(dim, inner_dim, bias = False) if not reuse_attention else None
self.to_v = nn.Linear(dim, inner_dim, bias = False)

self.to_out = nn.Sequential(
Rearrange('b h n d -> b n (h d)'),
nn.Linear(inner_dim, dim, bias = False),
nn.Dropout(dropout)
)

def forward(
self,
x,
context = None,
return_attn = False,
attn = None
):
x = self.norm(x)
context = default(context, x)

v = self.to_v(context)
v = self.split_heads(v)

if not self.reuse_attention:
qk = (self.to_q(x), self.to_k(context))
q, k = tuple(self.split_heads(t) for t in qk)

q = q * self.scale
sim = einsum(q, k, 'b h i d, b h j d -> b h i j')

attn = self.attend(sim)
attn = self.dropout(attn)
else:
assert exists(attn), 'attention matrix must be passed in for reusing previous attention'

out = einsum(attn, v, 'b h i j, b h j d -> b h i d')
out = self.to_out(out)

if not return_attn:
return out

return out, attn

# LookViT

class LookViT(Module):
def __init__(
self,
*,
dim,
image_size,
num_classes,
depth = 3,
patch_size = 16,
heads = 8,
mlp_factor = 4,
dim_head = 64,
highres_patch_size = 12,
highres_mlp_factor = 4,
cross_attn_heads = 8,
cross_attn_dim_head = 64,
patch_conv_kernel_size = 7,
dropout = 0.1,
channels = 3
):
super().__init__()
assert divisible_by(image_size, highres_patch_size)
assert divisible_by(image_size, patch_size)
assert patch_size > highres_patch_size, 'patch size of the main vision transformer should be smaller than the highres patch sizes (that does the `lookup`)'
assert not divisible_by(patch_conv_kernel_size, 2)

self.dim = dim
self.image_size = image_size
self.patch_size = patch_size

kernel_size = patch_conv_kernel_size
patch_dim = (highres_patch_size * highres_patch_size) * channels

self.to_patches = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (p1 p2 c) h w', p1 = highres_patch_size, p2 = highres_patch_size),
nn.Conv2d(patch_dim, dim, kernel_size, padding = kernel_size // 2),
Rearrange('b c h w -> b h w c'),
LayerNorm(dim),
)

# absolute positions

num_patches = (image_size // highres_patch_size) ** 2
self.pos_embedding = nn.Parameter(torch.randn(num_patches, dim))

# lookvit blocks

layers = ModuleList([])

for _ in range(depth):
layers.append(ModuleList([
Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = dropout),
MLP(dim = dim, factor = mlp_factor, dropout = dropout),
Attention(dim = dim, dim_head = cross_attn_dim_head, heads = cross_attn_heads, dropout = dropout),
Attention(dim = dim, dim_head = cross_attn_dim_head, heads = cross_attn_heads, dropout = dropout, reuse_attention = True),
LayerNorm(dim),
MLP(dim = dim, factor = highres_mlp_factor, dropout = dropout)
]))

self.layers = layers

self.norm = LayerNorm(dim)
self.highres_norm = LayerNorm(dim)

self.to_logits = nn.Linear(dim, num_classes, bias = False)

def forward(self, img):
assert img.shape[-2:] == (self.image_size, self.image_size)

# to patch tokens and positions

highres_tokens = self.to_patches(img)
size = highres_tokens.shape[-2]

pos_emb = posemb_sincos_2d(highres_tokens)
highres_tokens = highres_tokens + rearrange(pos_emb, '(h w) d -> h w d', h = size)

tokens = F.interpolate(
rearrange(highres_tokens, 'b h w d -> b d h w'),
img.shape[-1] // self.patch_size,
mode = 'bilinear'
)

tokens = rearrange(tokens, 'b c h w -> b (h w) c')
highres_tokens = rearrange(highres_tokens, 'b h w c -> b (h w) c')

# attention and feedforwards

for attn, mlp, lookup_cross_attn, highres_attn, highres_norm, highres_mlp in self.layers:

# main tokens cross attends (lookup) on the high res tokens

lookup_out, lookup_attn = lookup_cross_attn(tokens, highres_tokens, return_attn = True) # return attention as they reuse the attention matrix
tokens = lookup_out + tokens

tokens = attn(tokens) + tokens
tokens = mlp(tokens) + tokens

# attention-reuse

lookup_attn = rearrange(lookup_attn, 'b h i j -> b h j i') # transpose for reverse cross attention

highres_tokens = highres_attn(highres_tokens, tokens, attn = lookup_attn) + highres_tokens
highres_tokens = highres_norm(highres_tokens)

highres_tokens = highres_mlp(highres_tokens) + highres_tokens

# to logits

tokens = self.norm(tokens)
highres_tokens = self.highres_norm(highres_tokens)

tokens = reduce(tokens, 'b n d -> b d', 'mean')
highres_tokens = reduce(highres_tokens, 'b n d -> b d', 'mean')

return self.to_logits(tokens + highres_tokens)

# main

if __name__ == '__main__':
v = LookViT(
image_size = 256,
num_classes = 1000,
dim = 512,
depth = 2,
heads = 8,
dim_head = 64,
patch_size = 32,
highres_patch_size = 8,
highres_mlp_factor = 2,
cross_attn_heads = 8,
cross_attn_dim_head = 64,
dropout = 0.1
).cuda()

img = torch.randn(2, 3, 256, 256).cuda()
pred = v(img)

assert pred.shape == (2, 1000)

0 comments on commit bd72b58

Please sign in to comment.