Skip to content

[IEEE-CH 2025 Best Paper Award] Official Pytorch Lightning implementation of "Recoptic: Computer Vision for the Reconstruction of Dismembered Coptic Codices"

Notifications You must be signed in to change notification settings

lorebianchi98/ReCoptic

Repository files navigation

ReCoptic

Computer Vision for the Reconstruction of Dismembered Coptic Codices

ReCoptic provides a PyTorch Lightning implementation of a system for identifying whether pairs of Coptic manuscript pages originate from the same codex. The ultimate goal is to support the virtual reconstruction of fragmented Coptic manuscripts through visual similarity.


Installation

To set up the environment:

conda create --name recoptic python=3.9
conda activate recoptic

pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 \
  --extra-index-url https://download.pytorch.org/whl/cu117

pip install -r requirements.txt

Data Preparation

  1. Download the Coptic manuscript images from the Biblioteca Apostolica Vaticana.
  2. Use the notebook dataset_creator.ipynb to organize the dataset and generate the appropriate training/validation/test splits.

Training

To train the model:

python main.py \
  --annotation_path path/to/ann \
  --base_path path/to/imgs \
  --model_cfg configs/model/resnet152.yaml \
  --train_cfg configs/train/partial_infonce.yaml

Evaluation

To evaluate a trained model:

python eval.py \
  --model_path path/to/checkpoint \
  --dataset_path path/to/ann \
  --base_path path/to/imgs

About

[IEEE-CH 2025 Best Paper Award] Official Pytorch Lightning implementation of "Recoptic: Computer Vision for the Reconstruction of Dismembered Coptic Codices"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published