Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TorchToLinalg] Add aten.fft_rfft and lowering #3857

Open
wants to merge 11 commits into
base: main
Choose a base branch
from
26 changes: 26 additions & 0 deletions include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -12980,6 +12980,32 @@ def Torch_AtenFftFftOp : Torch_Op<"aten.fft_fft", [
}];
}

def Torch_AtenFftRfftOp : Torch_Op<"aten.fft_rfft", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::fft_rfft : (Tensor, int?, int, str?) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchOptionalIntType:$n,
Torch_IntType:$dim,
AnyTorchOptionalStringType:$norm
);
let results = (outs
AnyTorchOptionalTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenFftRfftOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 4, 1);
}
void AtenFftRfftOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 4, 1);
}
}];
}

def Torch_AtenFftIfftOp : Torch_Op<"aten.fft_ifft", [
AllowsTypeRefinement,
HasValueSemantics,
Expand Down
2 changes: 2 additions & 0 deletions include/torch-mlir/Dialect/Torch/Utils/Utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@ namespace Torch {

int64_t toPositiveDim(int64_t dim, int64_t inputRank);
bool isValidDim(int64_t dim, int64_t inputRank);
Value toIntListConstruct(PatternRewriter &rewriter, Location loc,
ArrayRef<int64_t> cstInput, Torch::IntType intType);
bool getListConstructElements(Value v, SmallVectorImpl<Value> &elems);
/// Returns the index indicated by `v` for a list of given `length`.
/// If the index is negative, it is adjusted to `length` + `v`.
Expand Down
191 changes: 191 additions & 0 deletions lib/Conversion/TorchToLinalg/Linear.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@

#include "PopulatePatterns.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/IR/Matchers.h"
Expand Down Expand Up @@ -1373,6 +1374,194 @@ class ConvertAtenConvolutionOp : public OpConversionPattern<AtenConvolutionOp> {
};
} // namespace

namespace {

/// Creates coefficients based on DFT definition, see
/// https://en.wikipedia.org/wiki/Discrete_Fourier_transform.
Value getDFTMatmulCoeff(OpBuilder b, Location loc,
RankedTensorType matrixType) {

ComplexType complexTy = llvm::cast<ComplexType>(matrixType.getElementType());
mlir::FloatType floatType =
llvm::cast<mlir::FloatType>(complexTy.getElementType());

// scale = 2 * pi / N
double scale = 2 * M_PI / matrixType.getDimSize(0);

SmallVector<std::complex<APFloat>> values;
for (auto i : llvm::seq<unsigned>(0, matrixType.getDimSize(0))) {
for (auto j : llvm::seq<unsigned>(0, matrixType.getDimSize(1))) {
double v = scale * i * j;
double realV = cos(v);
double imagV = -sin(v);

bool unused;
APFloat real(realV);
real.convert(floatType.getFloatSemantics(), APFloat::rmNearestTiesToEven,
&unused);
APFloat imag(imagV);
imag.convert(floatType.getFloatSemantics(), APFloat::rmNearestTiesToEven,
&unused);

values.push_back(std::complex<APFloat>(real, imag));
}
}
return b.create<arith::ConstantOp>(
loc, matrixType, DenseElementsAttr::get(matrixType, values));
}

struct ConvertAtenFftRfftOp final : OpConversionPattern<AtenFftRfftOp> {
using OpConversionPattern::OpConversionPattern;

LogicalResult
matchAndRewrite(AtenFftRfftOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value self = adaptor.getSelf();

int64_t dim;
auto dimVal = op.getDim();
if (isa<torch::Torch::NoneType>(dimVal.getType())) {
dim = -1;
} else if (!matchPattern(dimVal, torch::Torch::m_TorchConstantInt(&dim))) {
return rewriter.notifyMatchFailure(
op, "unimplemented: requires dim to be constant");
}

if (!isa<torch::Torch::NoneType>(op.getN().getType())) {
return rewriter.notifyMatchFailure(op, "unimplemented: parameter n");
}

if (!isa<torch::Torch::NoneType>(op.getNorm().getType())) {
return rewriter.notifyMatchFailure(op, "unimplemented: parameter norm");
}

RankedTensorType inputType =
cast<RankedTensorType>(adaptor.getSelf().getType());
if (!inputType.hasRank()) {
return rewriter.notifyMatchFailure(
op, "unsupported: only ranked tensors are supported");
}

const ArrayRef<int64_t> inputShape = inputType.getShape();
dim += dim < 0 ? inputShape.size() : 0;

const int64_t fftLength = inputShape[dim];
if (fftLength == ShapedType::kDynamic) {
return rewriter.notifyMatchFailure(
op, "unsupported: FFT signal length must be static");
}
const int64_t rank = inputType.getRank();
const int64_t lastDim = rank - 1;
const int64_t outputFftDim = fftLength / 2 + 1;
const bool needTranspose = dim != lastDim;

// Transpose if FFT dimension is not the last one
llvm::SmallVector<int64_t> perms = llvm::to_vector(llvm::seq(rank));
std::swap(perms[dim], perms[lastDim]);
if (needTranspose) {
self = transposeValue(loc, self, perms, rewriter);
}

RankedTensorType newResultType = llvm::cast<RankedTensorType>(
getTypeConverter()->convertType(op.getType()));
ComplexType complexElemType =
llvm::cast<ComplexType>(newResultType.getElementType());
Type elemType = complexElemType.getElementType();

// coeffMatrix : tensor<fftLength x outputFftDim x complex<f32>>
RankedTensorType coeffType =
RankedTensorType::get({fftLength, outputFftDim}, complexElemType);
// coeffMatrix(n,m) = cos(2 pi n m / N) - j sin(2 pi n m / N)
Value coeffMatrix = getDFTMatmulCoeff(rewriter, loc, coeffType);

// #matmul_trait = {
// indexing_maps = [
// affine_map<(d_0, ... d_m, f, o) -> (d_0, ... d_m, f)>,
// affine_map<(d_0, ... d_m, f, o) -> (f, o)>,
// affine_map<(d_0, ... d_m, f, o) -> (d_0, ... d_m, o)>
// ],
// iterator_types = ["parallel", ..., "parallel", "reduction", "parallel"]
// }
// linalg.generic #matmul_trait
// ins(%A, %B : tensor<D_0 x ... x D_m x fftLength x f32>,
// tensor<fftLength x outputFftDim x complex<f32>>)
// outs(%C : tensor<D_0 x ... x D_m x outputFftDim x complex<f32>>) {
// ^bb0(%a: f32, %b: complex<f32>, %c: complex<f32>) :
// %re = complex.re %b : f32
// %im = complex.im %b : f32
// %mulre = arith.mulf %a, %re: f32
// %mulim = arith.mulf %a, %im: f32
// %mulcplx = complex.create %mulre, %mulim : complex<f32>
// %add = complex.add %c, %mulcplx: complex<f32>
// linalg.yield %add : complex<f32>
// } -> (tensor<D_0 x ... x D_m x outputFftDim x complex<f32>>)

Value lhs = self;
Value rhs = coeffMatrix;
RankedTensorType lhsType = llvm::cast<RankedTensorType>(lhs.getType());
ArrayRef<int64_t> lhsShape(lhsType.getShape());
ArrayRef<int64_t> rhsShape(coeffType.getShape());

unsigned batchRank = lhsShape.size() - 1;

SmallVector<AffineExpr> lhsExpr;
SmallVector<AffineExpr> rhsExpr;
SmallVector<AffineExpr> outExpr;
SmallVector<utils::IteratorType> iteratorTypes(
batchRank, utils::IteratorType::parallel);
SmallVector<Value> resultShape;
for (unsigned i = 0; i < batchRank; i++) {
lhsExpr.push_back(rewriter.getAffineDimExpr(i));
outExpr.push_back(rewriter.getAffineDimExpr(i));
resultShape.push_back(getDimOp(rewriter, loc, lhs, i));
}
unsigned fIdx = batchRank, oIdx = batchRank + 1;
lhsExpr.insert(lhsExpr.end(), {rewriter.getAffineDimExpr(fIdx)});
rhsExpr.insert(rhsExpr.end(), {rewriter.getAffineDimExpr(fIdx),
rewriter.getAffineDimExpr(oIdx)});
outExpr.insert(outExpr.end(), {rewriter.getAffineDimExpr(oIdx)});
resultShape.insert(resultShape.end(),
{getDimOp(rewriter, loc, rhs, rhsShape.size() - 1)});

Value zeroTensor =
createZeroInitTensor(rewriter, loc, resultShape, complexElemType);
auto indexingMaps = AffineMap::inferFromExprList(
{lhsExpr, rhsExpr, outExpr}, rewriter.getContext());
iteratorTypes.insert(iteratorTypes.end(), {utils::IteratorType::reduction,
utils::IteratorType::parallel});

Value complexRes =
rewriter
.create<linalg::GenericOp>(
loc, zeroTensor.getType(),
/*inputs=*/ValueRange{lhs, rhs},
/*outputs=*/zeroTensor, indexingMaps, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value l = args[0], r = args[1], res = args[2];
Value re = b.create<complex::ReOp>(loc, elemType, r);
Value im = b.create<complex::ImOp>(loc, elemType, r);
Value mulRe = b.create<arith::MulFOp>(loc, l, re);
Value mulIm = b.create<arith::MulFOp>(loc, l, im);
Value mulCplx = b.create<complex::CreateOp>(
loc, complexElemType, mulRe, mulIm);
Value add = b.create<complex::AddOp>(loc, mulCplx, res);
b.create<linalg::YieldOp>(loc, add);
})
.getResult(0);

// Transpose back
if (needTranspose) {
complexRes = transposeValue(loc, complexRes, perms, rewriter);
}

rewriter.replaceOp(op, complexRes);
return success();
}
};

} // namespace

void mlir::torch::torch_to_linalg::populateLinearPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target) {
Expand All @@ -1387,4 +1576,6 @@ void mlir::torch::torch_to_linalg::populateLinearPatternsAndLegality(
patterns.add<ConvertAtenBmmOp>(typeConverter, context);
target.addIllegalOp<AtenConvolutionOp>();
patterns.add<ConvertAtenConvolutionOp>(typeConverter, context);
target.addIllegalOp<AtenFftRfftOp>();
patterns.add<ConvertAtenFftRfftOp>(typeConverter, context);
}
82 changes: 82 additions & 0 deletions lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10689,6 +10689,50 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" func.func @\"__torch_mlir_shape_fn.aten.fft_fft\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.int, %arg3: !torch.optional<str>) -> !torch.list<int> {\n"
" return %arg0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.fft_rfft\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.int, %arg3: !torch.optional<str>) -> !torch.list<int> {\n"
" %true = torch.constant.bool true\n"
" %none = torch.constant.none\n"
" %str = torch.constant.str \"AssertionError: Expected dim in [-rank, rank-1]\"\n"
" %false = torch.constant.bool false\n"
" %int0 = torch.constant.int 0\n"
" %int2 = torch.constant.int 2\n"
" %int1 = torch.constant.int 1\n"
" %0 = torch.aten.lt.int %arg2, %int0 : !torch.int, !torch.int -> !torch.bool\n"
" %1 = torch.prim.If %0 -> (!torch.int) {\n"
" %10 = torch.aten.len.t %arg0 : !torch.list<int> -> !torch.int\n"
" %11 = torch.aten.add.int %arg2, %10 : !torch.int, !torch.int -> !torch.int\n"
" torch.prim.If.yield %11 : !torch.int\n"
" } else {\n"
" torch.prim.If.yield %arg2 : !torch.int\n"
" }\n"
" %2 = torch.aten.ge.int %1, %int0 : !torch.int, !torch.int -> !torch.bool\n"
" %3 = torch.prim.If %2 -> (!torch.bool) {\n"
" %10 = torch.aten.len.t %arg0 : !torch.list<int> -> !torch.int\n"
" %11 = torch.aten.lt.int %1, %10 : !torch.int, !torch.int -> !torch.bool\n"
" torch.prim.If.yield %11 : !torch.bool\n"
" } else {\n"
" torch.prim.If.yield %false : !torch.bool\n"
" }\n"
" torch.prim.If %3 -> () {\n"
" torch.prim.If.yield\n"
" } else {\n"
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield\n"
" }\n"
" %4 = torch.prim.ListConstruct : () -> !torch.list<int>\n"
" %5 = torch.aten.len.t %arg0 : !torch.list<int> -> !torch.int\n"
" torch.prim.Loop %5, %true, init() {\n"
" ^bb0(%arg4: !torch.int):\n"
" %10 = torch.aten.__getitem__.t %arg0, %arg4 : !torch.list<int>, !torch.int -> !torch.int\n"
" %11 = torch.aten.append.t %4, %10 : !torch.list<int>, !torch.int -> !torch.list<int>\n"
" torch.prim.Loop.condition %true, iter()\n"
" } : (!torch.int, !torch.bool) -> ()\n"
" %6 = torch.aten.__getitem__.t %arg0, %1 : !torch.list<int>, !torch.int -> !torch.int\n"
" %7 = torch.aten.floordiv.int %6, %int2 : !torch.int, !torch.int -> !torch.int\n"
" %8 = torch.aten.add.int %7, %int1 : !torch.int, !torch.int -> !torch.int\n"
" %9 = torch.aten._set_item.t %4, %1, %8 : !torch.list<int>, !torch.int, !torch.int -> !torch.list<int>\n"
" return %4 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.stft\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.optional<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<list<int>>, %arg5: !torch.bool, %arg6: !torch.optional<bool>, %arg7: !torch.optional<bool>) -> !torch.list<int> {\n"
" %str = torch.constant.str \"AssertionError: Expected hop_length to be greater than 0\"\n"
" %str_0 = torch.constant.str \"AssertionError: Expected that 0 < n_fft <= len\"\n"
Expand Down Expand Up @@ -12766,6 +12810,44 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" }\n"
" return %3 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.fft_rfft\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.optional<int>, %arg2: !torch.int, %arg3: !torch.optional<str>) -> !torch.int {\n"
" %none = torch.constant.none\n"
" %str = torch.constant.str \"AssertionError: Unsupported dtype\"\n"
" %int10 = torch.constant.int 10\n"
" %int7 = torch.constant.int 7\n"
" %int9 = torch.constant.int 9\n"
" %int6 = torch.constant.int 6\n"
" %int8 = torch.constant.int 8\n"
" %int5 = torch.constant.int 5\n"
" %0 = torch.prim.Uninitialized : !torch.int\n"
" %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" %2 = torch.aten.eq.int %1#1, %int5 : !torch.int, !torch.int -> !torch.bool\n"
" %3 = torch.prim.If %2 -> (!torch.int) {\n"
" torch.prim.If.yield %int8 : !torch.int\n"
" } else {\n"
" %4 = torch.aten.eq.int %1#1, %int6 : !torch.int, !torch.int -> !torch.bool\n"
" %5 = torch.prim.If %4 -> (!torch.int) {\n"
" torch.prim.If.yield %int9 : !torch.int\n"
" } else {\n"
" %6 = torch.aten.eq.int %1#1, %int7 : !torch.int, !torch.int -> !torch.bool\n"
" %7 = torch.prim.If %6 -> (!torch.int) {\n"
" torch.prim.If.yield %int10 : !torch.int\n"
" } else {\n"
" %8 = func.call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.is_integer_dtype(%1#1) : (!torch.int) -> !torch.bool\n"
" %9 = torch.prim.If %8 -> (!torch.int) {\n"
" torch.prim.If.yield %int9 : !torch.int\n"
" } else {\n"
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield %0 : !torch.int\n"
" }\n"
" torch.prim.If.yield %9 : !torch.int\n"
" }\n"
" torch.prim.If.yield %7 : !torch.int\n"
" }\n"
" torch.prim.If.yield %5 : !torch.int\n"
" }\n"
" return %3 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.stft\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.int, %arg2: !torch.optional<int>, %arg3: !torch.optional<int>, %arg4: !torch.optional<tuple<int, int>>, %arg5: !torch.bool, %arg6: !torch.optional<bool>, %arg7: !torch.optional<bool>) -> !torch.int {\n"
" %str = torch.constant.str \"AssertionError: Unsupported dtype\"\n"
" %int7 = torch.constant.int 7\n"
Expand Down
Loading
Loading