-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][vector] Add support for vector extract/insert_strided_slice in vector distribution. #145421
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
7eda85a
311d6d7
c999c20
478811f
630b101
0993ce9
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -15,9 +15,12 @@ | |
#include "mlir/Dialect/Vector/IR/VectorOps.h" | ||
#include "mlir/Dialect/Vector/Transforms/VectorDistribution.h" | ||
#include "mlir/IR/AffineExpr.h" | ||
#include "mlir/IR/Attributes.h" | ||
#include "mlir/IR/BuiltinTypes.h" | ||
#include "mlir/Interfaces/SideEffectInterfaces.h" | ||
#include "mlir/Transforms/RegionUtils.h" | ||
#include "llvm/ADT/SetVector.h" | ||
#include "llvm/ADT/SmallVectorExtras.h" | ||
#include "llvm/Support/FormatVariadic.h" | ||
#include <utility> | ||
|
||
|
@@ -52,6 +55,25 @@ static AffineMap calculateImplicitMap(VectorType sequentialType, | |
return map; | ||
} | ||
|
||
/// Given a sequential and distributed vector type, returns the distributed | ||
/// dimension. This function expects that only a single dimension is | ||
/// distributed. | ||
static int getDistributedDim(VectorType sequentialType, | ||
VectorType distributedType) { | ||
assert(sequentialType.getRank() == distributedType.getRank() && | ||
"sequential and distributed vector types must have the same rank"); | ||
int64_t distributedDim = -1; | ||
for (int64_t i = 0; i < sequentialType.getRank(); ++i) { | ||
if (distributedType.getDimSize(i) != sequentialType.getDimSize(i)) { | ||
// Keep this assert here in case WarpExecuteOnLane0Op gets extended to | ||
// support distributing multiple dimensions in the future. | ||
assert(distributedDim == -1 && "found multiple distributed dims"); | ||
distributedDim = i; | ||
} | ||
} | ||
return distributedDim; | ||
} | ||
|
||
namespace { | ||
|
||
/// Helper struct to create the load / store operations that permit transit | ||
|
@@ -1076,6 +1098,194 @@ struct WarpOpCreateMask : public WarpDistributionPattern { | |
} | ||
}; | ||
|
||
/// Sink out insert_strided_slice op feeding into a warp op yield. | ||
/// ``` | ||
/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<8x1xf32>) { | ||
/// ... | ||
/// %src = ... : vector<4x16xf32> | ||
/// %dest = ... : vector<8x16xf32> | ||
/// %insert = vector.insert_strided_slice %src, %dest, offsets = [0, 0], | ||
/// strides = [1, 1] : vector<4x16xf32> into vector<8x16xf32> | ||
/// gpu.yield %insert : vector<8x16xf32> | ||
/// } | ||
/// ``` | ||
/// To | ||
/// ``` | ||
/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<4x1xf32>, | ||
/// vector<8x1xf32>) { | ||
/// ... | ||
/// %src = ... : vector<4x16xf32> | ||
/// %dest = ... : vector<8x16xf32> | ||
/// gpu.yield %src, %dest : vector<4x16xf32>, vector<8x16xf32> | ||
/// } | ||
/// %insert = vector.insert_strided_slice %0#0, %0#1, | ||
/// offsets = [0, 0], strides = [1, 1] : vector<4x1xf32> into vector<8x1xf32> | ||
/// ``` | ||
/// NOTE: Current support assume that both src and dest vectors are distributed | ||
/// to lanes and sinking the insert op does not require any cross lane | ||
/// communication. | ||
struct WarpOpInsertStridedSlice : public WarpDistributionPattern { | ||
using Base::Base; | ||
LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, | ||
PatternRewriter &rewriter) const override { | ||
OpOperand *operand = | ||
getWarpResult(warpOp, llvm::IsaPred<vector::InsertStridedSliceOp>); | ||
if (!operand) | ||
return failure(); | ||
unsigned int operandNumber = operand->getOperandNumber(); | ||
auto insertOp = | ||
operand->get().getDefiningOp<vector::InsertStridedSliceOp>(); | ||
auto distributedType = | ||
cast<VectorType>(warpOp.getResult(operandNumber).getType()); | ||
// Distributed type must be 2D or higher. | ||
// TODO: Support 1D distributed types. | ||
if (distributedType.getRank() < 2) | ||
return rewriter.notifyMatchFailure( | ||
insertOp, "result vector type must be 2D or higher"); | ||
// Find the distributed dimension of the dest vector. There should be | ||
// exactly one. | ||
auto yieldedType = cast<VectorType>(operand->get().getType()); | ||
int64_t destDistributedDim = | ||
getDistributedDim(yieldedType, distributedType); | ||
assert(destDistributedDim != -1 && "could not find distributed dimension"); | ||
(void)destDistributedDim; | ||
VectorType srcType = insertOp.getSourceVectorType(); | ||
VectorType destType = insertOp.getDestVectorType(); | ||
// Currently we require that both source (kD) and dest (nD) vectors are | ||
// distributed. This requires that distributedDim (d) is contained in the | ||
// last k dims of the dest vector (d >= n - k). | ||
// TODO: Add support for case where source vector is not distributed. | ||
int64_t sourceDistributedDim = | ||
destDistributedDim - (destType.getRank() - srcType.getRank()); | ||
if (sourceDistributedDim < 0) | ||
return rewriter.notifyMatchFailure( | ||
insertOp, "distributed dimension must be in the last k dims"); | ||
// Distributed dimension must be fully inserted. | ||
if (srcType.getDimSize(sourceDistributedDim) != | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. What is the reason we disallow distributing the following case? I think the distribution should work as long as offsets are multiple of subgroup size. => suppose subgroup size = 32 |
||
destType.getDimSize(destDistributedDim)) | ||
return rewriter.notifyMatchFailure( | ||
insertOp, "distributed dimension must be fully inserted"); | ||
SmallVector<int64_t> newSourceDistShape( | ||
insertOp.getSourceVectorType().getShape()), | ||
newDestDistShape(insertOp.getDestVectorType().getShape()); | ||
newSourceDistShape[sourceDistributedDim] = | ||
distributedType.getDimSize(destDistributedDim); | ||
newDestDistShape[destDistributedDim] = | ||
distributedType.getDimSize(destDistributedDim); | ||
auto newSourceTy = | ||
VectorType::get(newSourceDistShape, distributedType.getElementType()); | ||
auto newDestTy = | ||
VectorType::get(newDestDistShape, distributedType.getElementType()); | ||
SmallVector<size_t> newRetIndices; | ||
WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( | ||
rewriter, warpOp, {insertOp.getValueToStore(), insertOp.getDest()}, | ||
{newSourceTy, newDestTy}, newRetIndices); | ||
rewriter.setInsertionPointAfter(newWarpOp); | ||
auto distributedSource = newWarpOp->getResult(newRetIndices[0]); | ||
auto distributedDest = newWarpOp->getResult(newRetIndices[1]); | ||
// Create a new insert strided slice op that inserts distributed source into | ||
// distributed dest. | ||
Value newInsert = rewriter.create<vector::InsertStridedSliceOp>( | ||
insertOp.getLoc(), distributedDest.getType(), distributedSource, | ||
distributedDest, insertOp.getOffsets(), insertOp.getStrides()); | ||
rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), newInsert); | ||
return success(); | ||
} | ||
}; | ||
|
||
/// Sink out extract_strided_slice op feeding into a warp op yield. | ||
/// ``` | ||
/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<16x1xf32>) { | ||
/// ... | ||
/// %src = ... : vector<32x16xf32> | ||
/// %extract = vector.extract_strided_slice %src, offsets = [0], sizes = [16], | ||
/// strides = [1] : vector<32x16xf32> to vector<16x16xf32> | ||
/// gpu.yield %extract : vector<16x16xf32> | ||
/// } | ||
/// ``` | ||
/// To | ||
/// ```` | ||
/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<32x1xf32>) { | ||
/// ... | ||
/// %src = ... : vector<32x16xf32> | ||
/// gpu.yield %src : vector<32x16xf32> | ||
/// } | ||
/// %extract = vector.extract_strided_slice %0, offsets = [0], sizes = [16], | ||
/// strides = [1] : vector<32x1xf32> to vector<16x1xf32> | ||
/// ``` | ||
/// NOTE: Current support assumes that the extraction happens only on non | ||
/// distributed dimensions (does not require cross lane communication). | ||
struct WarpOpExtractStridedSlice : public WarpDistributionPattern { | ||
using Base::Base; | ||
LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp, | ||
PatternRewriter &rewriter) const override { | ||
OpOperand *operand = | ||
getWarpResult(warpOp, llvm::IsaPred<vector::ExtractStridedSliceOp>); | ||
if (!operand) | ||
return failure(); | ||
unsigned int operandNumber = operand->getOperandNumber(); | ||
auto extractOp = | ||
operand->get().getDefiningOp<vector::ExtractStridedSliceOp>(); | ||
auto distributedType = | ||
cast<VectorType>(warpOp.getResult(operandNumber).getType()); | ||
// Distributed type must be 2D or higher. | ||
// TODO: Support 1D distributed types. | ||
if (distributedType.getRank() < 2) | ||
return rewriter.notifyMatchFailure( | ||
extractOp, "result vector type must be 2D or higher"); | ||
|
||
// Find the distributed dimension. There should be exactly one. | ||
auto yieldedType = cast<VectorType>(operand->get().getType()); | ||
int64_t distributedDim = getDistributedDim(yieldedType, distributedType); | ||
assert(distributedDim != -1 && "could not find distributed dimension"); | ||
|
||
// Distributed dimension must be fully extracted. | ||
// TODO: Partial extraction from distributed dimension require cross lane | ||
// communication. | ||
if (distributedDim < static_cast<int64_t>(extractOp.getSizes().size())) { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Consider giving a proper name for this expression to improve readability "static_cast<int64_t>(extractOp.getSizes().size())". Something like extractedVecRank There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. renamed to There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. what about "else" case here? |
||
int64_t distributedDimOffset = | ||
llvm::cast<IntegerAttr>(extractOp.getOffsets()[distributedDim]) | ||
.getInt(); | ||
int64_t distributedDimSize = | ||
llvm::cast<IntegerAttr>(extractOp.getSizes()[distributedDim]) | ||
.getInt(); | ||
if (distributedDimOffset != 0 || | ||
distributedDimSize != yieldedType.getDimSize(distributedDim)) | ||
return rewriter.notifyMatchFailure( | ||
extractOp, "distributed dimension must be fully extracted"); | ||
} | ||
SmallVector<int64_t> newDistributedShape( | ||
extractOp.getSourceVectorType().getShape()); | ||
newDistributedShape[distributedDim] = | ||
distributedType.getDimSize(distributedDim); | ||
auto newDistributedType = | ||
VectorType::get(newDistributedShape, distributedType.getElementType()); | ||
SmallVector<size_t> newRetIndices; | ||
WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns( | ||
rewriter, warpOp, {extractOp.getVector()}, {newDistributedType}, | ||
newRetIndices); | ||
rewriter.setInsertionPointAfter(newWarpOp); | ||
SmallVector<Attribute> distributedSizes = llvm::map_to_vector( | ||
extractOp.getSizes(), [](Attribute attr) { return attr; }); | ||
// Update the distributed sizes to match the distributed type. | ||
if (distributedDim < static_cast<int64_t>(distributedSizes.size())) | ||
distributedSizes[distributedDim] = rewriter.getI64IntegerAttr( | ||
distributedType.getDimSize(distributedDim)); | ||
|
||
// Create a new extract strided slice op that extracts from the | ||
// distributed vector. | ||
Value distributedVec = newWarpOp->getResult(newRetIndices[0]); | ||
Value newExtract = rewriter.create<vector::ExtractStridedSliceOp>( | ||
extractOp.getLoc(), distributedType, distributedVec, | ||
extractOp.getOffsets(), | ||
ArrayAttr::get(rewriter.getContext(), distributedSizes), | ||
extractOp.getStrides()); | ||
rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), | ||
newExtract); | ||
return success(); | ||
} | ||
}; | ||
|
||
/// Pattern to move out vector.extract of single element vector. Those don't | ||
/// need to be distributed and can just be propagated outside of the region. | ||
struct WarpOpExtract : public WarpDistributionPattern { | ||
|
@@ -1122,15 +1332,7 @@ struct WarpOpExtract : public WarpDistributionPattern { | |
auto distributedType = | ||
cast<VectorType>(warpOp.getResult(operandNumber).getType()); | ||
auto yieldedType = cast<VectorType>(operand->get().getType()); | ||
int64_t distributedDim = -1; | ||
for (int64_t i = 0; i < yieldedType.getRank(); ++i) { | ||
if (distributedType.getDimSize(i) != yieldedType.getDimSize(i)) { | ||
// Keep this assert here in case WarpExecuteOnLane0Op gets extended to | ||
// support distributing multiple dimensions in the future. | ||
assert(distributedDim == -1 && "found multiple distributed dims"); | ||
distributedDim = i; | ||
} | ||
} | ||
int64_t distributedDim = getDistributedDim(yieldedType, distributedType); | ||
assert(distributedDim != -1 && "could not find distributed dimension"); | ||
(void)distributedDim; | ||
|
||
|
@@ -1764,7 +1966,8 @@ void mlir::vector::populatePropagateWarpVectorDistributionPatterns( | |
patterns.add<WarpOpElementwise, WarpOpDeadResult, WarpOpBroadcast, | ||
WarpOpShapeCast, WarpOpExtract, WarpOpForwardOperand, | ||
WarpOpConstant, WarpOpExtractElement, WarpOpInsertElement, | ||
WarpOpInsertScalar, WarpOpInsert, WarpOpCreateMask>( | ||
WarpOpInsertScalar, WarpOpInsert, WarpOpCreateMask, | ||
WarpOpExtractStridedSlice, WarpOpInsertStridedSlice>( | ||
patterns.getContext(), benefit); | ||
patterns.add<WarpOpExtractScalar>(patterns.getContext(), warpShuffleFromIdxFn, | ||
benefit); | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -1296,6 +1296,86 @@ func.func @vector_insert_2d_broadcast(%laneid: index) -> (vector<4x96xf32>) { | |
return %r : vector<4x96xf32> | ||
} | ||
|
||
// ----- | ||
// CHECK-PROP-LABEL: func.func @vector_extract_strided_slice_2d_distr_outer( | ||
// CHECK-RPOP-SAME: %[[LANEID:.*]]: index | ||
// CHECK-PROP: %[[W:.*]] = gpu.warp_execute_on_lane_0{{.*}} -> (vector<64x1xf32>) { | ||
// CHECK-PROP: %[[VEC:.*]] = "some_def"() : () -> vector<64x32xf32> | ||
// CHECK-PROP: gpu.yield %[[VEC]] : vector<64x32xf32> | ||
// CHECK-PROP: %[[EXTRACT:.*]] = vector.extract_strided_slice %[[W]] | ||
// CHECK-PROP-SAME: {offsets = [8], sizes = [24], strides = [1]} : vector<64x1xf32> to vector<24x1xf32> | ||
// CHECK-PROP: return %[[EXTRACT]] : vector<24x1xf32> | ||
func.func @vector_extract_strided_slice_2d_distr_outer(%laneid: index) -> (vector<24x1xf32>) { | ||
%r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<24x1xf32>) { | ||
%0 = "some_def"() : () -> (vector<64x32xf32>) | ||
%1 = vector.extract_strided_slice %0 { offsets = [8], sizes = [24], strides = [1]} | ||
: vector<64x32xf32> to vector<24x32xf32> | ||
gpu.yield %1 : vector<24x32xf32> | ||
} | ||
return %r : vector<24x1xf32> | ||
} | ||
|
||
// ----- | ||
// CHECK-PROP-LABEL: func.func @vector_extract_strided_slice_2d_distr_inner( | ||
// CHECK-PROP-SAME: %[[LANEID:.*]]: index | ||
// CHECK-PROP: %[[W:.*]] = gpu.warp_execute_on_lane_0{{.*}} -> (vector<1x64xf32>) { | ||
// CHECK-PROP: %[[VEC:.*]] = "some_def"() : () -> vector<32x64xf32> | ||
// CHECK-PROP: gpu.yield %[[VEC]] : vector<32x64xf32> | ||
// CHECK-PROP: %[[EXTRACT:.*]] = vector.extract_strided_slice %[[W]] | ||
// CHECK-PROP-SAME: {offsets = [0, 12], sizes = [1, 8], strides = [1, 1]} : vector<1x64xf32> to vector<1x8xf32> | ||
// CHECK-PROP: return %[[EXTRACT]] : vector<1x8xf32> | ||
func.func @vector_extract_strided_slice_2d_distr_inner(%laneid: index) -> (vector<1x8xf32>) { | ||
%r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<1x8xf32>) { | ||
%0 = "some_def"() : () -> (vector<32x64xf32>) | ||
%1 = vector.extract_strided_slice %0 { offsets = [0, 12], sizes = [32, 8], strides = [1, 1]} | ||
: vector<32x64xf32> to vector<32x8xf32> | ||
gpu.yield %1 : vector<32x8xf32> | ||
} | ||
return %r : vector<1x8xf32> | ||
} | ||
|
||
// ----- | ||
// CHECK-PROP-LABEL: func.func @vector_insert_strided_slice_1d_to_2d( | ||
// CHECK-PROP-SAME: %[[LANEID:.*]]: index) | ||
// CHECK-PROP: %[[W:.*]]:2 = gpu.warp_execute_on_lane_0({{.*}} -> (vector<1xf32>, vector<64x1xf32>) { | ||
// CHECK-PROP: %[[SRC:.*]] = "some_def"() : () -> vector<32xf32> | ||
// CHECK-PROP: %[[DEST:.*]] = "some_def"() : () -> vector<64x32xf32> | ||
// CHECK-PROP: gpu.yield %[[SRC]], %[[DEST]] : vector<32xf32>, vector<64x32xf32> | ||
// CHECK-PROP: %[[INSERT:.*]] = vector.insert_strided_slice %[[W]]#0, %[[W]]#1 | ||
// CHECK-PROP-SAME: {offsets = [18, 0], strides = [1]} : vector<1xf32> into vector<64x1xf32> | ||
// CHECK-PROP: return %[[INSERT]] : vector<64x1xf32> | ||
func.func @vector_insert_strided_slice_1d_to_2d(%laneid: index) -> (vector<64x1xf32>) { | ||
%r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<64x1xf32>) { | ||
%0 = "some_def"() : () -> (vector<32xf32>) | ||
%1 = "some_def"() : () -> (vector<64x32xf32>) | ||
%2 = vector.insert_strided_slice %0, %1 { offsets = [18, 0], strides = [1]} | ||
: vector<32xf32> into vector<64x32xf32> | ||
gpu.yield %2 : vector<64x32xf32> | ||
} | ||
return %r : vector<64x1xf32> | ||
} | ||
|
||
// ----- | ||
// CHECK-PROP-LABEL: func.func @vector_insert_strided_slice_2d_to_2d( | ||
// CHECK-PROP-SAME: %[[LANEID:.*]]: index) | ||
// CHECK-PROP: %[[W:.*]]:2 = gpu.warp_execute_on_lane_0{{.*}} -> (vector<16x1xf32>, vector<64x1xf32>) { | ||
// CHECK-PROP: %[[SRC:.*]] = "some_def"() : () -> vector<16x32xf32> | ||
// CHECK-PROP: %[[DEST:.*]] = "some_def"() : () -> vector<64x32xf32> | ||
// CHECK-PROP: gpu.yield %[[SRC]], %[[DEST]] : vector<16x32xf32>, vector<64x32xf32> | ||
// CHECK-PROP: %[[INSERT:.*]] = vector.insert_strided_slice %[[W]]#0, %[[W]]#1 {offsets = [36, 0], strides = [1, 1]} : | ||
// CHECK-PROP-SAME: vector<16x1xf32> into vector<64x1xf32> | ||
// CHECK-PROP: return %[[INSERT]] : vector<64x1xf32> | ||
func.func @vector_insert_strided_slice_2d_to_2d(%laneid: index) -> (vector<64x1xf32>) { | ||
%r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<64x1xf32>) { | ||
%0 = "some_def"() : () -> (vector<16x32xf32>) | ||
%1 = "some_def"() : () -> (vector<64x32xf32>) | ||
%2 = vector.insert_strided_slice %0, %1 { offsets = [36, 0], strides = [1, 1]} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. should restrict the offset along the distribution dim to be multiple of subgroup size. For example, offsets = [36, 1] should be rejected. |
||
: vector<16x32xf32> into vector<64x32xf32> | ||
gpu.yield %2 : vector<64x32xf32> | ||
} | ||
return %r : vector<64x1xf32> | ||
} | ||
|
||
// ----- | ||
|
||
// Make sure that all operands of the transfer_read op are properly propagated. | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: consider subgroup size as 32 to be consistent with test.